FLEX I/O Isolated Analog Modules

User Manual

(Catalog Numbers 1794-IF4I, 1794-OF4I,1794-IF2XOF2I,1794-IF4IXT, 1794-IF4ICFXT, 1794-OF4IXT)

Important User Information

Solid-state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines for the Application, Installation and Maintenance of Solid State Controls (Publication SGI-1.1 available from your local Rockwell Automation sales office or online at http://www.rockwellautomation.com/literature/) describes some important differences between solid-state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the wide variety of uses for solid-state equipment, all persons responsible for applying this equipment must satisfy themselves that each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

\triangle	WARNING: Identifies information about practices or circumstances that can cause an explosion in a hazardous environment, which may lead to personal injury or death, property damage, or economic loss.
IMPORTANT	Identifies information that is critical for successful application and understanding of the product.
\triangle	ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage, or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence
A	WARNING: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may be present.
	WARNING: Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach dangerous temperatures.

Allen-Bradley, FLEX, PLC-2, PLC-3, PLC-5, Rockwell Automation, Rockwell Software, RSLogix, RSLogix 5000, RSNetworx, and TechConnect are trademarks of Rockwell Automation, Inc.

ControlNet, DeviceNet, and EtherNet/IP are trademarks of ODVA, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

Summary of Changes	New and Updated Information		
Preface	Who Should Use this Manual Purpose of this Manual About the Vocabulary Additional Resources	9 9	
	Chapter 1		
About the FLEX I/O Isolated Analog Modules	What This Chapter Contains The FLEX I/O System. Types of FLEX I/O Modules How FLEX I/O Analog Modules	. 13	
	Communicate with Programmable Controllers Features of Your Analog Modules. Chapter Summary.	. 16	
	Chapter 2		
How to Install Your Analog Module	What This Chapter Contains Before You Install Your Analog Module Power Requirements. Install the Module Mounting the Terminal Base Unit on a DIN Rail Panel/Wall Mounting Mount the Analog Module on the Terminal Base Unit Connect Wiring for the Analog Modules.	. 17. 18. 19. 21. 22	
	Connect Wiring using a 1794-TB3, 1794-TB3T, 1794-TB3S or 1794-TB3TS Terminal Base Unit Wiring to a 1794-TBN or 1794-TBNF Terminal Base Unit Module Indicators Chapter Summary	. 26	
	Chapter 3		
Module Programming	What This Chapter Contains Block Transfer Programming. Configuration Rungs Example Configuration rungs. Sample Programs for FLEX I/O Analog Modules PLC-3 Programming. PLC-5 Programming.	. 31. 32. 32. 33. 35	
	PLC-2 Programming		

Write Configuration to and
Reading Status from Your
Module with a Remote I/O
Adapter

Communication and I/O Image

DeviceNet/ControlNet Adapter

Table Mapping with the

Chantau /

103

Chapter 4
What This Chapter Contains 51
Configure Your Analog Module
Range Selection
Safe State Selection
Data Format
Real Time Sampling
Input Filtering
Read Data from Your Module
Map Data for the Analog Modules
8 Input Analog Module — 1794-IF4I 56
4 Isolated Output Analog Module — 1794-OF4II
2 Input/2 Output Analog Combo Module — 1794-IF2XOF2I 67
Chapter Summary
Chapter 5
What This Chapter Contains
About RSNetWorx and RSLogix
Polled I/O Structure
Adapter Input Status Word 76
Map Data into the Image Table 77
4 Input Isolated Analog Module — 1794-IF4I Image Table Mapping
77
4 Output Isolated Analog Module — 1794-OF4I Image
Table Mapping84
Isolated Analog Combo Module — 1794-IF2XOF2I Series B Image
Table Mapping
Defaults
Chapter Summary
Chapter 6
What This Chapter Contains 99
About the ControlNet Adapter
Communication Over the FLEX I/O Backplane
Polled I/O Structure
Adapter Input Status Word
Safe State Data
Communication Fault Behavior
Idle State Behavior
Input Data Behavior Upon Module Removal
4 Input Isolated Analog Module — 1794-IF4I, 1794-IF4IXT,
1794-IF4ICFXT Table Mapping
Set EN bit Off (0) for Configuration block. Module actions (Reset,

Safe State and Hold Last State) are set using programming software. .

Input, Output, Status and **Configuration Files for Analog** Modules when used with ControlNet

	4 Isolated Output Analog Module — 1794-OF4I Image Table Mapping	
	Chapter 7	
Calibrate Your Module	What This Chapter Contains	. 123
	When and How to	
	Calibrate Your Isolated	
	Analog Module	. 123
	Tools and Equipment	. 124
	Calibrate Your Isolated Analog Input Module	. 124
	Bits Used During Calibration	. 125
	Offset Calibration for Inputs	. 125
	Set the Input Gain	. 127
	Calibrate Your Isolated Analog Output Module	
	Bits Used During Calibration	. 128
	Calibrate Voltage Outputs	. 128
	Calibrate Current Outputs	. 130
	Scaling Inputs	
	Scaling Outputs	
	Chapter Summary	. 134
	Appendix A	
Specifications	Filter Response for 150 Hz, 300 Hz and 600 Hz Conversion	. 136

Notes:

This manual contains new and updated information. Changes throughout this revision are marked by change bars, as shown to the right of this paragraph.

New and Updated Information

This table contains the additions made to this revision.

Topic	Page
Corrected I/O module default values	97
Updated configuration tables on the following: - added brackets < and > - updated data type to read Signed 2's Complement - changed offset binary from ±20 mA to 020 mA	Chapter 1, Chapter 4-7
Corrected Module Status Word (MSW) Word 1 to Word 0	Chapter 4, 5
Corrected output value ranges in both hexadecimal and decimal formats for 1794-IF2X0F2I and 1794-0F4I	Table 4.19, 5.13, 6.11, 4.12, 5.8, and 6.7

Notes:

Read this preface to familiarize yourself with the rest of the manual. It provides information concerning:

- who should use this manual
- the purpose of this manual
- related documentation
- supporting information for FLEX™ I/O modules.

Who Should Use this Manual

Use this manual if you are responsible for designing, installing, programming, or troubleshooting your FLEX I/O modules.

You must be able to program and operate an Allen-Bradley® programmable controller to make efficient use of your FLEX I/O modules. In particular, you must know how to program block transfers.

We assume that you know how to do this in this manual. If you do not, refer to the appropriate programming and operations manual before you attempt to program your modules.

Purpose of this Manual

This manual shows you how to use your FLEX I/O Isolated Analog modules with Allen-Bradley programmable controllers. This manual:

- explains how to install, wire, program and troubleshoot your modules
- Except where noted, information that applies to 1794-IF4I, 1794-OF4I, and IF2XOF2I also applies to 1794-IF4IXT, 1794-IF4ICFXT, 1794-OF4IXT, and IF2XOF2IXT.

About the Vocabulary

In this manual, we refer to:

- the isolated analog input or isolated analog output module as the "input module" or "output module"
- the Programmable Controller as the "controller"

Additional Resources

These documents contain additional information concerning related Rockwell Automation products.

Resource	Description
FLEX I/O Product Profile, publication 1794-PP019	Comprehensive product profile for the FLEX I/O product line.
FLEX I/O ControlNet Redundant Media Adapter, publication 1794-5.18	Information on how to install the FLEX I/O ControlNet Redundant Media Adapter (Catalog No. 1794-ACNR).
FLEX I/O EtherNet/IP Adapter Module Installation Instructions, publication 1794-IN082	Information on how to install the FLEX I/O EtherNet/IP Adapter Module (Catalog No. 1794-AENT).
FLEX I/O ControlNet Adapter Module Installation Instructions, publication 1794-IN128	Information on how to install the ControlNet Adapter Modules (Catalog No. 1794-ACN15, 1794-ACN15K, 1794-ACNR15, 1794-ACNR15XT, Series D).
FLEX I/O DeviceNet Adapter Module Installation Instructions, publication 1794-IN099	Information on how to install the FLEX I/O DeviceNet Adapter Modules (Catalog No. 1794-ADN, 1794-ADNK).
Remote I/O Adapter Modules Installation Instructions, publication <u>1794-IN098</u>	Information on how to install the Remote I/O Adapter Modules (Catalog No. 1794-ASB, 1794-ASB2, 1794-ASBK, 1794-ASB2K).
Remote I/O Adapter Module User Manual, publication 1794-UM009	Information on how to use the Remote I/O Adapter Module (Catalog No. 1794-ASB).
FLEX I/O PROFIBUS Adapter Module Installation Instructions, publication 1794-IN087	Information on how to install the FLEX I/O PROFIBUS Adapter (Catalog No. 1794-APB).
FLEX I/O PROFIBUS Adapter Module User Manual, publication 1794-UM057	Information on how to use the FLEX I/O PROFIBUS Adapter Module (Catalog No. 1794-APB).
FLEX I/O Digital Input Modules Installation Instructions, publication 1794-IN093	Information on how to install the FLEX I/O Digital Input Modules (Catalog No. 1794-IB8, 1794-IB16, 1794-IB16K, 1794-IB32).
FLEX I/O Digital DC Sourcing Input and Sinking Output Modules Installation Instructions, publication 1794-IN095	Information on how to install the FLEX I/O Digital DC Sourcing Input and Sinking Output Modules (Catalog No. 1794-IV16, 1794-OV16, 1794-OV16P).
FLEX I/O Digital DC Sourcing Output Modules Installation Instructions, publication 1794-IN094	Information on how to install the FLEX I/O Digital DC Sourcing Output Modules (Catalog No. 1794-0B8, 1794-0B8EP, 1794-0B16, 1794-0B16P, 1794-0B32P).
FLEX I/O Input/ Output Module Installation Instructions, publication 1794-IN083	Information on how to install the FLEX I/O Input/ Output Modules (Catalog No. 1794-IB16XOB16P, 1794-IB10XOB6).
FLEX I/O 8 Output Relay Module Installation Instructions, publication 1794-IN019	Information on how to install the FLEX I/O 8 Output Relay Modules (Catalog No. 1794-OW8, 1794-OW8XT).

Resource	Description
FLEX I/O Input, Output and Input/Output Analog Modules Installation Instructions, publication 1794-IN100	Information on how to install the FLEX I/O Input, Output and Input/Output Analog Modules (Catalog No. 1794-IE8, 1794-IE4XOE2, 1794-OE4, 1794-IE8K, 1794-OE4K).
FLEX I/O Analog Module User Manual, publication 1794-UM002	Information on how to install the FLEX I/O Analog Modules (Catalog No. 794-0E4, 1794-IE8, 1794-IE12, 1794-0E12, 1794-IE4X0E2, 1794-IE8X0E4, 1794-IE4X0E2XT, 1794-IE8XT, 1794-0E4XT).
FLEX I/O Isolated Analog Output Module Installation Instructions, publication_ 1794-IN037	Information on how to install the FLEX I/O Isolated Analog Output Module (Catalog No. 1794-0F4I).
FLEX I/O 4 Isolated Input Module Installation Instructions, publication 1794-IN038	Information on how to install the FLEX I/O 4 Isolated Input Module (Catalog No. 1794-IF4I).
FLEX I/O 2 In/2 Out Isolated Analog Combo Module Installation Instructions, publication 1794-IN039	Information on how to install the FLEX I/O 2 In/2 Out Isolated Analog Combo Module (Catalog No. 1794-IF2XOF2I).
FLEX I/O Isolated Analog Modules User Manual, publication 1794-UM008	Information on how to use the FLEX I/O Isolated Analog Modules (Catalog No. 1794-IF4I, 1794-OF4I, 1794-IF2XOF2I, 1794-IF4IXT, 1794-IF4ICFXT, 1794-OF4IXT, 1794-IF2XOF2IXT).
FLEX I/O 8 Thermocouple Input Module Installation Instructions, publication 1794-IN021	Information on how to install the FLEX I/O 8 Thermocouple Input Modules (Catalog No. 1794-IT8, 1794-IR8).
FLEX I/O 8 Input RTD Module User Manual, publication 1794-UM004	Information on how to use the FLEX I/O 8 Input RTD Module (Catalog No. 1794-IR8).
FLEX I/O Thermocouple/Millivolt Input Module User Manual, publication 1794-UM007	Information on how to use the Thermocouple and RTD Input Module (Catalog No. 1794-IT8).
FLEX I/O Thermocouple/RTD Input Analog Module Instructions, publication <u>1794-IN050</u>	Information on how to install the Thermocouple/RTD Input Modules (Catalog No. 1794-IRT8, 1794-IRT8KT).
2-Input Frequency Module Installation Instructions, publication 1794-IN049	Information on how to install the 2-Input Frequency Module (Catalog No. 1794-IJ2, 1794-IJ2K, 1794-IJ2XT).
FLEX I/O Thermocouple, RTD, mV Input Modul, publication <u>1794-UM012</u>	Information on how to use the FLEX I/O Thermocouple, RTD, mV Input Module (Catalog No. 1794-IRT8, 1794-IRT8K, 1794-IRT8XT).
24V FLEX I/O 2 Channel Incremental Encoder Module Installation Instructions, publication <u>1794-IN063</u>	Information on how to install the 24V FLEX I/O 2 Channel Incremental Encoder Module (Catalog No. 1794-ID2).
FLEX Integra Analog Module User Manual, publication <u>1793-UM001</u>	Information on how to install the FLEX Integra Analog Module (Catalog No. 1793-IE2X0E1,1793-IE2X0E1S, 1793-IE4, 1793-IE4S, 1793-0E2, 1793-0E2S).

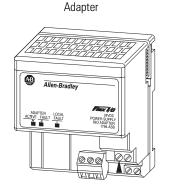
Resource	Description
FLEX I/O 4 Channel Pulse Counter Module Installation Instructions, publication 1794-IN064	Information on how to install the 24V DC FLEX I/O 4-Channel Module (Catalog No. 1794-IP4).
FLEX I/O Very High Speed Counter Module Installation Instruction, publication 1794-IN067	Information on how to install the Very High Speed Counter Module (Catalog No. 1794-VHSC).
FLEX I/O 48V DC Input and Output Modules Installation Instructions, publication 1794-IN105	Information on how to install the FLEX I/O 48V DC Input and Output Modules (Catalog No. 1794-IC16, 1794-OC16).
FLEX I/O AC Digital Input Modules Installation Instructions, publication_ 1794-IN102	Information on how to install the FLEX I/O AC Input Modules (Catalog No. 1794-IA8, 1794-IA8I, 1794-IA16).
FLEX I/O Digital AC Output Modules Installation Instructions, publication 1794-IN103	Information on how to install the FLEX I/O Digital AC Output Modules (Catalog No. 1794-0A8, 1794-0A8I, 1794-0A16).
FLEX I/O 220V AC Input and Output Modules Installation Instructions, publication 1794-IN104	Information on how to install the FLEX I/O 220V AC Input and Output Modules (Catalog No. 1794-IM8, 1794-OM8).
FLEX I/O Terminal Base Units Installation Instructions, publication 1794-IN092	Information on how to install the FLEX I/O Terminal Base Units (Catalog No. 1794-TB2, 1794-TB3, 1794-TB3K, 1794-TB3S, 1794-TB3C, 1794-TB3G, 1794-TB3GK, 1794-TB3GS, 1794-TB3T, 1794-TB3TS, 1794-TBN, 1794-TBNK, 1794-TBNF).
Interconnect Cable Installation Instructions, publication 1794-IN012	Information on how to install the Interconnect Cable (Catalog No. 1794-CE1, 1794-CE3).
FLEX I/O DC Power Supply Installation Instructions, publication 1794-IN069	Information on how to install the FLEX I/O DC Power Supply (Catalog No. 1794-PS13, 1794-PS3).
Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1	In-depth information on grounding and wiring Allen-Bradley programmable controllers.

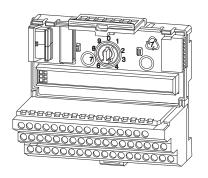
You can view or download publications at

http://www.rockwellautomation.com/literature/. To order paper copies of technical documentation, contact your local Rockwell Automation distributor or sales representative.

About the FLEX I/O Isolated Analog Modules

What This Chapter Contains


Read this chapter to familiarize yourself with the input and output analog modules.


For Information About	See Page
The FLEX I/O System	13
Types of FLEX I/O Modules	14
How FLEX I/O Analog Modules Communicate with Programmable Controllers	15
Features of Your Analog Modules	16
Chapter Summary	16

The FLEX I/O System


FLEX I/O is a small, modular I/O system for distributed applications that performs all of the functions of rack-based I/O. The FLEX I/O system contains the following components shown in Figure 1.1:

Figure 1.1

Terminal Base

I/O Module

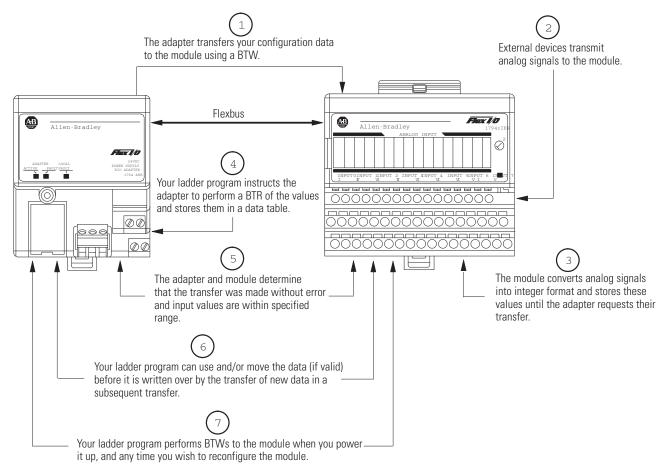
- adapter/power supply powers the internal logic for as many as eight I/O modules
- terminal base contains a terminal strip to terminate wiring for two- or three-wire devices
- I/O module contains the bus interface and circuitry needed to perform specific functions related to your application

Types of FLEX I/O Modules

We describe the following FLEX I/O Analog modules in this user manual:

Catalog Number	Voltage	Inputs	Outputs	Description
1794-IF4I	24V DC	4	_	analog – 4 inputs, isolated
1794-0F4I	24V DC	_	4	analog – 4 outputs, isolated
1794-IF2X0F2I	24V DC	2	2	analog – 2 input, isolated and 2 output, isolated

FLEX I/O analog input, output and combination modules are block transfer modules that interface analog signals with any Allen-Bradley programmable controllers that have block transfer capability. Block transfer programming moves input from the module's memory to a designated area in the processor data table, and output data words from a designated area in the processor data table to the module's memory. Block transfer programming also moves configuration words from the processor data table to module memory.


The analog modules have selectable ranges as shown in the table below:

Input Values	Data Format	Underrange/Overrange
420 mA	signed 2's complement	4% Underrange, 4% Overrange
±10V	signed 2's complement	2% Underrange, 2% Overrange
±5V	signed 2's complement	4% Underrange, 4% Overrange
020 mA	signed 2's complement %	0% Underrange, 4% Overrange
420 mA	signed 2's complement %	4% Underrange, 4% Overrange
010V	signed 2's complement %	0% Underrange, 2% Overrange
±10V	signed 2's complement %	2% Underrange, 2% Overrange
020 mA	binary	0% Underrange, 4% Overrange
420 mA	binary	4% Underrange, 4% Overrange
010V	binary	0% Underrange, 2% Overrange
05V	binary	0% Underrange, 4% Overrange
020 mA	offset binary, 8000H = 0 mA	4% Underrange, 4% Overrange
420 mA	offset binary, 8000H = 4 mA	4% Underrange, 4% Overrange
±10V	offset binary, 8000H = 0V	2% Underrange, 2% Overrange
±5V	offset binary, 8000H = 0V	4% Underrange, 4% Overrange

How FLEX I/O Analog Modules Communicate with Programmable Controllers

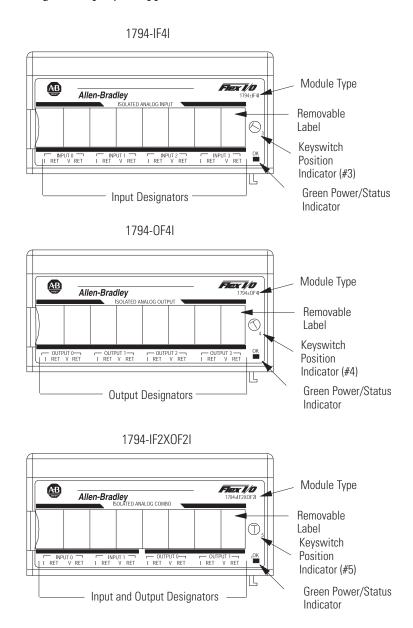

The adapter/power supply transfers data to the module (block-transfer write) and from the module (block-transfer read) using BTW and BTR instructions in your ladder diagram program. These instructions let the adapter obtain input values and status from the module, and let you send output values and establish the module's mode of operation. Figure 1.2 describes the communication process.

Figure 1.2
An Example of Communication Between an Adapter and an Analog Input Module

Features of Your Analog Modules

Each module has a unique label identifying its keyswitch position, wiring and module type. A removable label provides space for writing individual designations per your application.

Chapter Summary

In this chapter, you learned about the FLEX I/O system and the types of analog modules and how they communicate with programmable controllers.

How to Install Your Analog Module

What This Chapter Contains

Read this chapter to familiarize yourself with configurable features on the input and output analog modules.

For Information On	See Page
Before You Install Your Analog Module	17
Power Requirements	17
Install the Module	18
Connect Wiring for the Analog Modules	24
Module Indicators	30
Chapter Summary	30

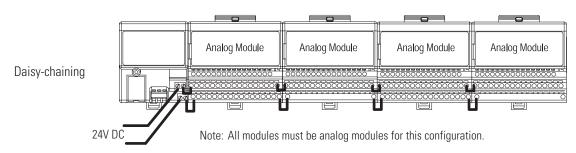
Before You Install Your Analog Module

Before installing your analog module in the I/O chassis:

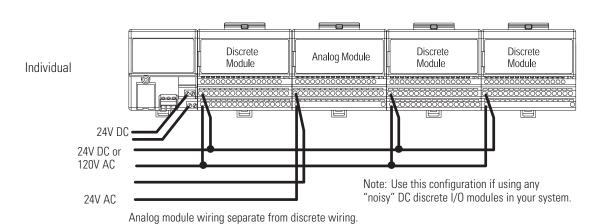
You need to:	As described under:
Calculate the power requirements of all modules in each chassis.	Power Requirements on page 17
Position the keyswitch on the terminal base	Mount the Analog Module on the Terminal Base Unit on page 22

Power Requirements

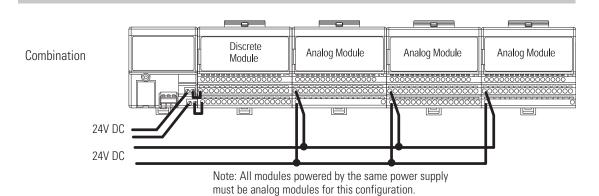
The wiring of the terminal base unit is determined by the current draw through the terminal base. Verify that the current draw does not exceed 10 A.


ATTENTION: Total current draw through the terminal base unit is limited to 10 A. Separate power connections may be necessary.

Methods of wiring the terminal base units are shown in the illustration below.



ATTENTION: Do not daisy chain power or ground from an analog terminal base unit to any AC or DC discrete module terminal base unit.


Figure 2.3 Terminal Base Wiring

Wiring when total current draw is less than 10 A

Wiring when total current draw is greater than 10 A

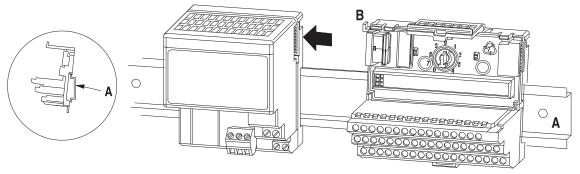
Total current draw through any base unit must not be greater than 10 A

Install the Module

Installation of the analog module consists of:

- mounting the terminal base unit
- installing the analog module into the terminal base unit
- installing the connecting wiring to the terminal base unit

If you are installing your module into a terminal base unit that is already installed, proceed to Mount the Analog Module on the Terminal Base Unit on page 22.


Mounting the Terminal Base Unit on a DIN Rail

ATTENTION: Do not remove or replace a terminal base unit when power is applied. Interruption of the FlexBus can result in unintended operation or machine motion.

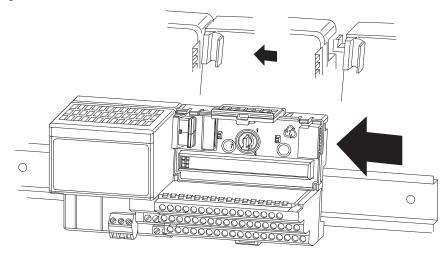
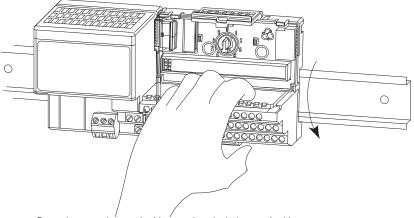
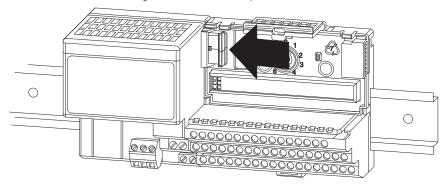

- 1. Remove the cover plug (if used) in the male connector of the unit to which you are connecting this terminal base unit.
- 2. Check to make sure that the 16 pins in the male connector on the adjacent device are straight and in line so that the mating female connector on this terminal base unit will mate correctly.
- 3. Position the terminal base on the 35 x 7.5 mm DIN rail **A** (A-B pt. no. 199-DR1; 46277-3; EN 50022) at a slight angle with hook **B** on the left side of the terminal base hooked into the right side of the unit on the left. Proceed as follows:

Figure 2.4



Position terminal base at a slight angle and hooked over the top of the DIN rail.

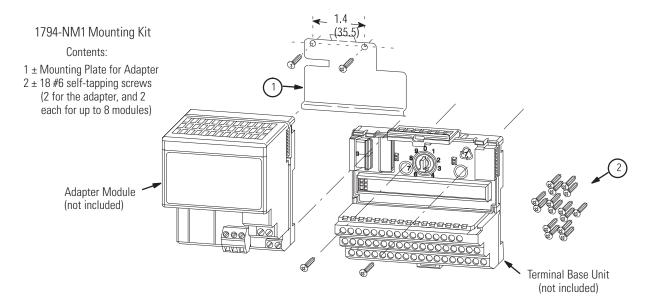

Figure 2.5

Slide the terminal base unit over tight against the adapter. Make sure the hook on the terminal base slides under the edge of the adapter and the flexbus connector is fully retracted.

Press down on the terminal base unit to lock the terminal base on the DIN rail. If the terminal base does not lock into place, use a screwdriver or similar device to open the locking tab, press down on the terminal base until flush with the DIN rail and release the locking tab to lock the base in place.

Gently push the flexbus connector into the side of the adapter to complete the backplane connection.

4. Repeat steps 1...3 to install the next terminal base.


Panel/Wall Mounting

Installation on a wall or panel consists of:

- laying out the drilling points on the wall or panel
- drilling the pilot holes for the mounting screws
- mounting the adapter mounting plate
- installing the terminal base units and securing them to the wall or panel

If you are installing your module into a terminal base unit that is already installed, proceed to <u>Mount the Analog Module on the Terminal Base Unit on page 22</u>.

Use the mounting kit catalog number 1794-NM1 for panel/wall mounting.

To install the mounting plate on a wall or panel:

1. Lay out the required points on the wall/panel as shown in the drilling dimension drawing.

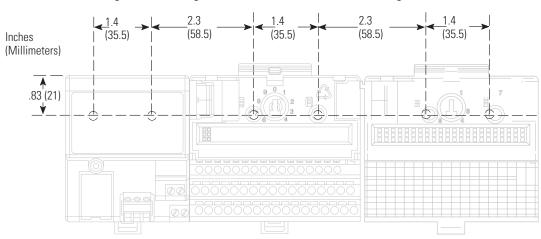
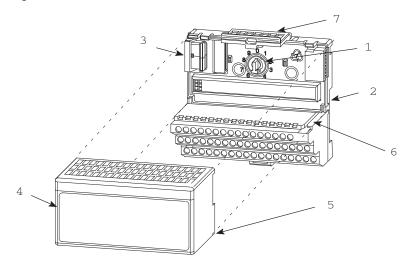


Figure 2.6 Drilling Dimensions for Panel/Wall Mounting of FLEX I/O

- 2. Drill the necessary holes for the #6 self-tapping mounting screws.
- 3. Mount the mounting plate (1) for the adapter module using two #6 self-tapping screws (18 included for mounting up to 8 modules and the adapter).

Make certain that the mounting plate is properly grounded to the panel. See "Industrial Automation Wiring and Grounding Guidelines," publication 1770-4.1.


- **4.** Hold the adapter (2) at a slight angle and engage the top of the mounting plate in the indention on the rear of the adapter module.
- 5. Press the adapter down flush with the panel until the locking lever locks.
- **6.** Position the terminal base unit up against the adapter and push the female bus connector into the adapter.
- 7. Secure to the wall with two #6 self-tapping screws.
- 8. Repeat for each remaining terminal base unit.

 The adapter is capable of addressing eight modules. Do not exceed a maximum of eight terminal base units in your system.

Mount the Analog Module on the Terminal Base Unit

1. Rotate the keyswitch (1) on the terminal base unit (2) clockwise to the position required for the specific type of analog module.

Figure 2.7

Analog Module Catalog Number	Keyswitch Position
1794-IF4I, 1794-IF4IXT, 1794-IF4ICFXT	3
1794-0F4I, 1794-0F4IXT	4
1794-IF2X0F2I, 1794-IF2X0F2IXT	5

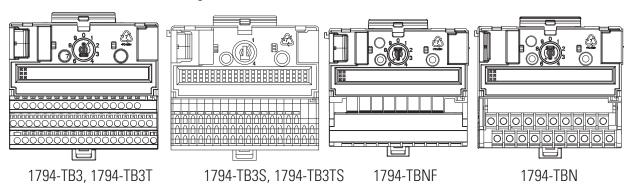
- 2. Make certain the FlexBus connector (3) is pushed all the way to the left to connect with the neighboring terminal base/adapter. You cannot install the module unless the connector is fully extended.
- **3.** Make sure that the pins on the bottom of the module are straight so they will align properly with the connector in the terminal base unit.
- **4.** Position the module (4) with its alignment bar (5) aligned with the groove (6) on the terminal base.
- 5. Press firmly and evenly to seat the module in the terminal base unit. The module is seated when the latching mechanism (7) is locked into the module.

6. Repeat the above steps to install the next module in its terminal base unit.

ATTENTION: Remove field-side power before removing or inserting the module. This module is designed so you can remove and insert it under backplane power. When you remove or insert a module with field-side power applied, an electrical arc may occur. An electrical arc can cause personal injury or property damage by:

- sending an erroneous signal to your system's field devices causing unintended machine motion
- · causing an explosion in a hazardous environment

ATTENTION: Repeated electrical arcing causes excessive wear to contacts on both the module and its mating connector. Worn contacts may create electrical resistance.


Connect Wiring for the Analog Modules

Wiring to the analog modules is made through the terminal base unit on which the module mounts.

Refer to the following table for recommended terminal base units that you can use for each module.

Module	1794-TB3	1794-TBT	1794-TB3S	1794-TB3TS	1794-TBN, 1794-TBNF
1794-IF4I, 1794-IF4IXT, 1794-IF4ICFXT	Yes	Yes	Yes	Yes	Yes
1794-0F4I, 1794-0F4IXT	Yes	Yes	Yes	Yes	Yes
1794-IF2XOF2I, 1794-IF2XOF2IXT	Yes	Yes	Yes	Yes	Yes

Figure 2.8

Connect wiring for the individual analog modules is shown on:

Module	Connect Wiring
1794-IF4I, 1794-IF4IXT, 1794-IF4ICFXT	See Table 2.1
1794-0F4I, 1794-0F4IXT	
1794-IF2X0F2I, 1794-IF2X0F2IXT	See Table 2.2

Connect Wiring using a 1794-TB3, 1794-TB3T, 1794-TB3S or 1794-TB3TS Terminal Base Unit

Connect the individual signal wiring to numbered terminals on the 0...15
row (A) on the terminal base unit. Use Belden 8761 cable for signal wiring.

ATTENTION: Connect only one current or one voltage signal per channel. Do not connect both current and voltage on one channel.

2. Connect each channel signal return to:

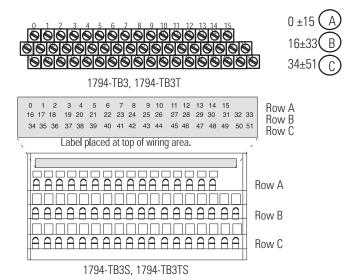
1794-IF4I – the associated terminal on row A.

1794-OF4I – the corresponding terminal on the same row (A)

1794-IF4XOF2I – inputs – the associated terminal on row **A**; outputs – the corresponding terminal on the same row (**A**).

3. See <u>Table 2.1</u> or <u>Table 2.2</u>. Connect +24V DC to designated terminals on the 34...51 row (C), and 24V common to designated terminals on the 16...33 row (B).

ATTENTION: To reduce susceptibility to noise, power analog modules and discrete modules from separate power supplies. Do not exceed a length of 33 ft (10 m) for DC power cabling.



ATTENTION: Remove field-side power before removing or inserting the module. This module is designed so you can remove and insert it under backplane power. When you remove or insert a module with field-side power applied, an electrical arc may occur. An electrical arc can cause personal injury or property damage by:

 sending an erroneous signal to your system's field devices causing unintended machine motion

ATTENTION: causing an explosion in a hazardous environment Repeated electrical arcing causes excessive wear to contacts on both the module and its mating connector. Worn contacts may create electrical resistance.

Figure 2.9

4. If daisy chaining the +24V DC power to the next base unit, connect a jumper from terminal 51 on this base unit to terminal 34 on the next base unit. Connect the 24V DC common/return from terminal 33 on this base unit to terminal 16 on the next base unit.

Wiring to a 1794-TBN or 1794-TBNF Terminal Base Unit

- 1. Connect individual input or output wiring to the even numbered terminals on row (B) as indicated in the table below.
- 2. Connect the associated return wiring to the corresponding odd numbered terminal on row (C) for each input or output as indicated in the table below.
- **3.** Connect 24V DC to terminal 34 on row (**C**).
- **4.** Connect 24V DC common to terminal 16 on row (**B**).
- 5. If continuing power to the next terminal base unit, connect a jumper from terminal 51 (24V DC) on this base unit to terminal 34 on the next base unit.

If continuing common to the next terminal base unit, connect a jumper from terminal 33 (24V DC common) on this base unit to terminal 16 on the next base unit.

Table 2.1
Wiring connections for 1794-TB3, 1794-TB3T, 1794-TB3S, 1794-TB3TS, 1794-TBN and 1794-TBNF Terminal Base Units when using the 1794-IF4I or 1794-OF4I Isolated Analog Module

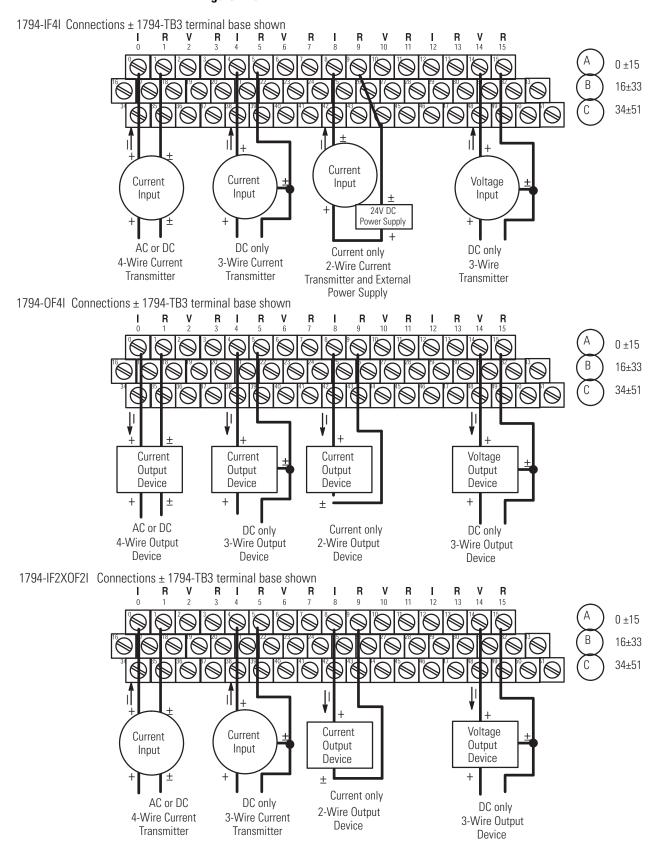
Channel	Signal Type	Label Markings	1794-TB3S,	1794-TB3, 1794-TB3T, 1794-TB3S, 1794-TB3TS ⁽²⁾ 1794-TBN, 1794-TBNF		
			Signal Terminal	Signal Return		
0	Current	10	0			
	Current	10		1		
	Voltage	V0	2			
	Voltage	V0 Ret		3		
1	Current	l1	4			
	Current	I1 Ret		5		
	Voltage	V1	6			
	Voltage	V1 Ret		7		
2	Current	12	8			
	Current	I2 Ret		9		
	Voltage	V2	10			
	Voltage	V2 Ret		11		
3	Current	13	12			
	Current	I3 Ret		13		
	Voltage	V3	14			
	Voltage	V3 Ret		15		
	24V DC Common	1794-TB3 — 16	S33 ⁽¹⁾			
		1794-TB3T, -TB3TS — 17, 1		3, 33		
		1794-TBN, -TBNF – 16 and 33				
	+24V DC power	1794-TB3 – 3451				
		1794-TB3T, -TB3TS – 34, 35, 50, 51				
		1794-TBN, -TBNF – 34 and 51				

⁽¹⁾ Terminals 16...33 are internally connected in the terminal base unit.

⁽²⁾ Terminal 39...46 are chassis ground. Terminals 36, 37, 38 and 47, 48, 49 are used or cold junction compensation.

Table 2.2
Wiring connections for the 1794-IF2XOF2I Isolated Analog Module when using 1794-TB3, 1794-TB3T, 1794-TB3S, 1794-TB3TS, 1794-TBNF Terminal Base Units

Channel	Signal Type	Label Markings	1794-TB3, 1794-TB3T, 1794-TB3S, 1794-TB3TS ⁽²⁾ 1794-TBN, 1794-TBNF		
			Signal Terminal	Signal Return	
Input 0	Current	10	0		
	Current	10		1	
	Voltage	V0	2		
	Voltage	V0 Ret		3	
Input 1	Current	I1	4		
	Current	I1 Ret		5	
	Voltage	V1	6		
	Voltage	V1 Ret		7	
Output 0	Current	12	8		
	Current	I2 Ret		9	
	Voltage	V2	10		
	Voltage	V2 Ret		11	
Output 1	Current	13	12		
	Current	I3 Ret		13	
	Voltage	V3	14		
	Voltage	V3 Ret		15	
		-	<u> </u>		
	24V DC Common	1794-TB3 — 1633 ⁽¹⁾ 1794-TB3T, -TB3TS — 17, 18, 33 1794-TBN, -TBNF — 16 and 33		3	
	+24V DC power	1794-TB3 — 3451 1794-TB3T, -TB3TS — 34, 35, 50, 51 1794-TBN, -TBNF — 34 and 51			


⁽¹⁾ Terminals 16...33 are internally connected in the terminal base unit.

ATTENTION: Total current draw through the terminal base unit is limited to 10 A. Separate power connections to the terminal base unit may be necessary.

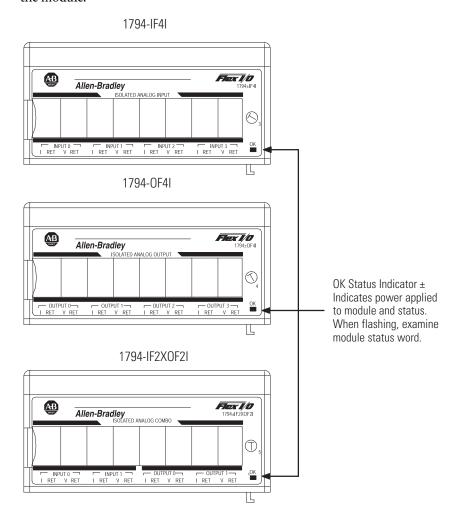

⁽²⁾ Terminal 39...46 are chassis ground. Terminals 36, 37, 38 and 47, 48, 49 are used or cold junction compensation.

Figure 2.10

Module Indicators

The analog modules have one status indicator that is on when power is applied to the module.

Chapter Summary

In this chapter, you learned how to install your input module in an existing programmable controller system and how to wire to the terminal base units.

Module Programming

What This Chapter Contains Read this chapter to program the input and output analog modules.

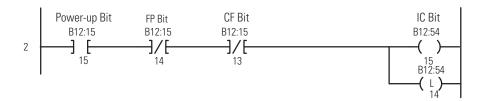
For Information On	See Page
Block Transfer Programming	31
Configuration Rungs	32
Sample Programs for FLEX I/O Analog Modules	33
SLC-5 Programming	38
Chapter Summary	50

Block Transfer Programming

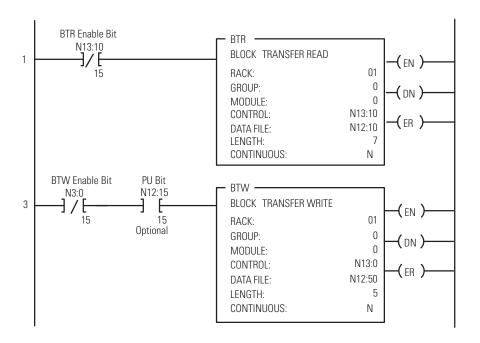
Your module communicates with the processor through bidirectional block transfers. This is the sequential operation of both read and write block transfer instructions.

A configuration block transfer write (BTW) is initiated when the analog module is first powered up, and subsequently only when the programmer wants to enable or disable features of the module. The configuration BTW sets the bits which enable the programmable features of the module, such as filters and signal ranges, etc. Block transfer reads are performed to retrieve information from the module.

Block transfer read (BTR) programming moves status and data from the module to the processor's data table. The processor user program initiates the request to transfer data from the module to the processor. The transferred words contain module status, channel status and input data from the module.


The following sample programs are minimum programs; all rungs and conditioning must be included in your application program. You can disable BTRs, or add interlocks to prevent writes if desired. Do not eliminate any storage bits or interlocks included in the sample programs. If interlocks are removed, the program may not work properly.

Your program should monitor status bits, block transfer read and block transfer write activity.


Configuration Rungs

Example Configuration rungs

It is necessary to toggle the IC bit⁽¹⁾ (initiate configuration) for the isolated analog modules to accept configuration data. Once the configuration data has been properly set up, the following rung will reconfigure the module (this example represents sizes for the 1794-IF4I module).

If there are rungs which already perform reads and writes to the module, no additional rungs are necessary. A simplified example of a BTR and BTW rung for 1794-IF4I follow (the 1794-OF4I is read length 6, write length 7; the 1794-IF2XOF2I is read length 7, write length 7):

An XIC (--) [--) instruction of the Power Up bit (PU) can be inserted to allow BTWs only when the module requires configuration (PU = 1).

⁽¹⁾ For systems that do not require ladder program control of configuration, set the TR bit (bit 13) to 1. See Chapter 4.

Sample Programs for FLEX I/O Analog Modules

The following sample programs show you how to use your analog module efficiently when operating with a programmable controller. These programs show you how to:

- configure the module
- read data from the module
- update the module's output channels (if used)

With RSLogix 5000°, just read or write the tags provided. RSLogix™ will perform the transfer so an explicit block transfer is not required.

These programs illustrate the minimum programming required for communication to take place.

PLC-3 Programming

Block transfer instructions with the PLC-3° processor use one binary file in a data table section for module location and other related data. This is the block transfer control file. The block transfer data file stores data that you want transferred to your module (when programming a block transfer write) or from your module (when programming a block transfer read). The address of the block transfer data files are stored in the block transfer control file.

The same block transfer control file is used for both the read and write instructions for your module. A different block transfer control file is required for every module.

A sample program segment with block transfer instructions is shown in Figure 1.1, and described below.

Figure 3.11 PLC-3 Family Sample Program Structure for a 1794-IF4I Module

At power-up in RUN mode, or when the processor is switched from PROG to RUN, the user program enables a block transfer read.

This rung toggles the Initate Configuration bit from 0 to 1 to 0 $\,$

Then it initiates a block transfer write to configure the module if the power--up bit is set

Thereafter, the program continuously performs read block transfers.

Note: You must create the data file for the block transfers before you enter the block transfer instructions.

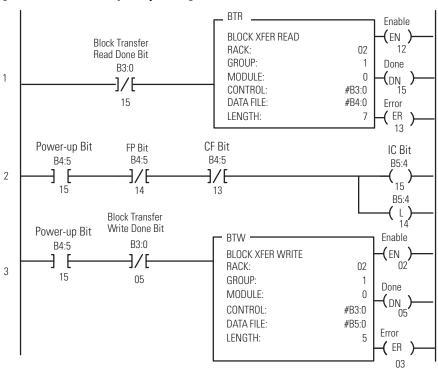


Figure 3.12 PLC-3 Family Sample Program Structure for a 1794-IF2XOF2I Module

Program Action

At power-up in RUN mode, or when the processor is switched from PROG to RUN, the user program enables a block transfer read.

This rung toggles the Initate Configuration bit from 0 to 1 to 0

Then it initiates a block transfer write to configure the module and send data values.

Thereafter, the program continuously performs read block transfers and write block transfers.

Note: You must create the data file for the block transfers before you enter the block transfer instructions.

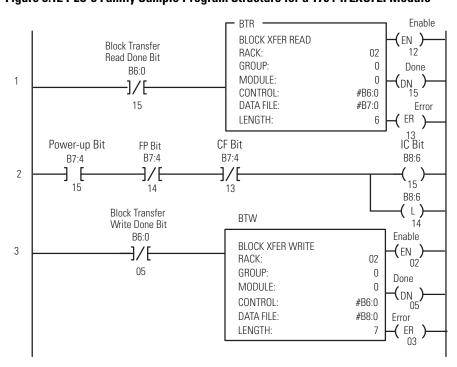
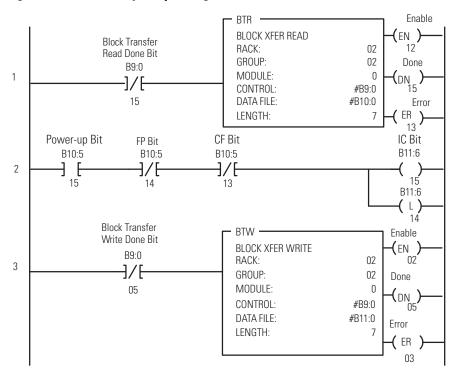


Figure 3.13 PLC-3 Family Sample Program Structure for a 1794-OF4I Module

Program Action


At power-up in RUN mode, or when the processor is switched from PROG to RUN, the user program enables a block transfer read.

This rung toggles the Initate Configuration bit from 0 to 1 to 0 $\,$

Then it initiates a block transfer write to configure the module and send data values

Thereafter, the program continuously performs read block transfers and write block transfers.

Note: You must create the data file for the block transfers before you enter the block transfer instructions.

PLC-5 Programming

The PLC-5° program is very similar to the PLC-3 program with the following exceptions:

- block transfer enable bits are used instead of done bits as the conditions on each rung.
- separate block transfer control files are used for the block transfer instructions.

Figure 3.14 PLC-5 Family Sample Program Structure for the 1794-IF4I

Program Action

At power-up in RUN mode, or when the processor is switched from PROG to RUN, the user program enables a block transfer read.

This rung toggles the Initate Configuration bit from 0 to 1 to 0 $\,$

Then it initiates a block transfer write to configure the module if the power-up bit is set.

Thereafter, the program continuously performs read block transfers to configure the module.

The pushbutton allows the user to manually request a block transfer write.

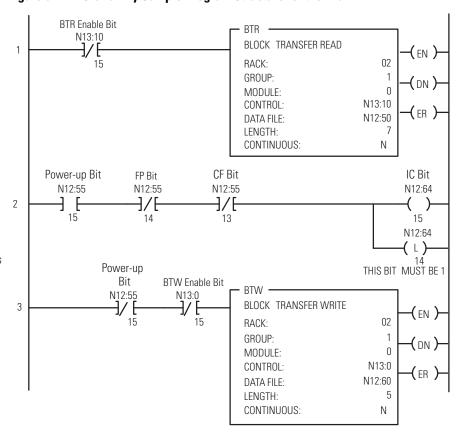


Figure 3.15 PLC-5 Family Sample Program Structure for the 1794-IF4I

At power-up in RUN mode, or when the processor is switched from PROG to RUN, the user program enables a block transfer read.

This rung toggles the Initate Configuration bit from 0 to 1 to 0 $\,$

Then it initiates a block transfer write to configure the module and send data values.

Thereafter, the program continuously performs read block transfers and write block 3 transfers.

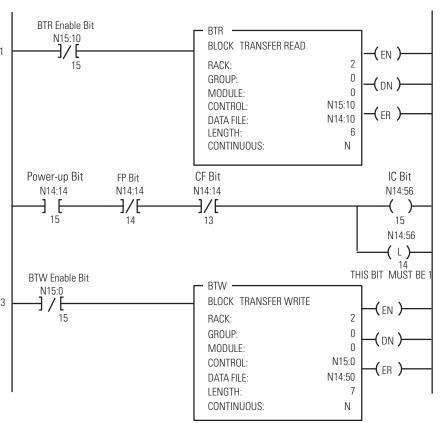
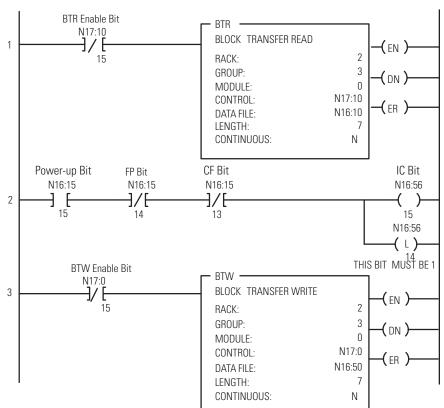


Figure 3.16 PLC-5 Family Sample Program Structure for the 1794-IF2X0F2I


Program Action

At power-up in RUN mode, or when the processor is switched from PROG to RUN, the user program enables a block transfer read.

This rung toggles the Initate Configuration bit from 0 to 1 to 0

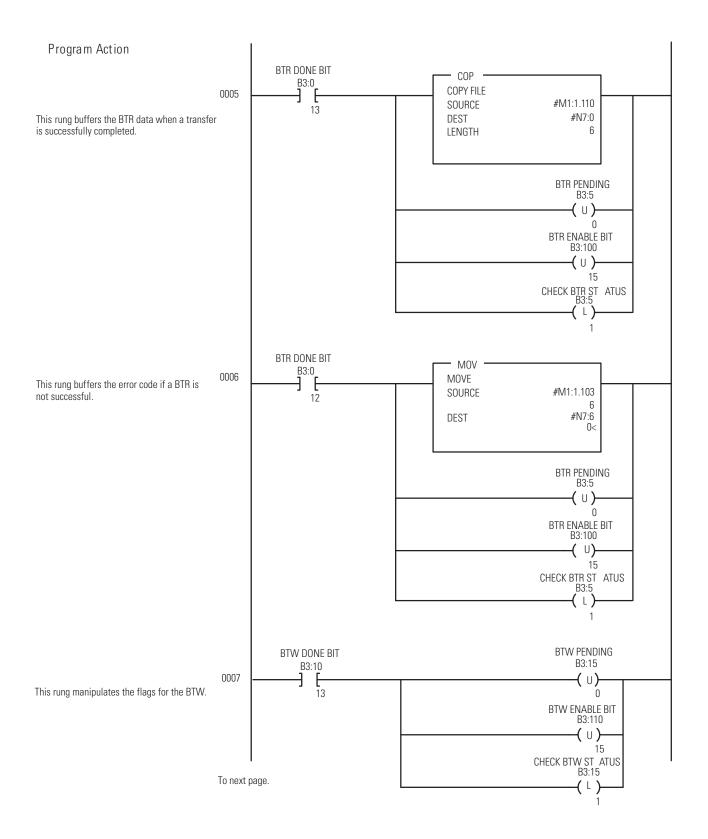
Then it initiates a block transfer write to configure the module and send data values.

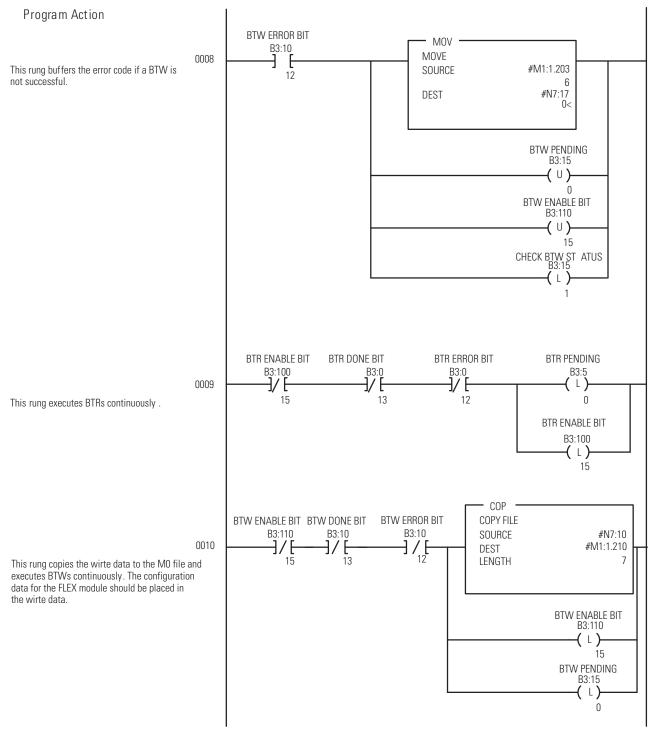
Thereafter, the program continuously performs read block transfers and write block transfers.

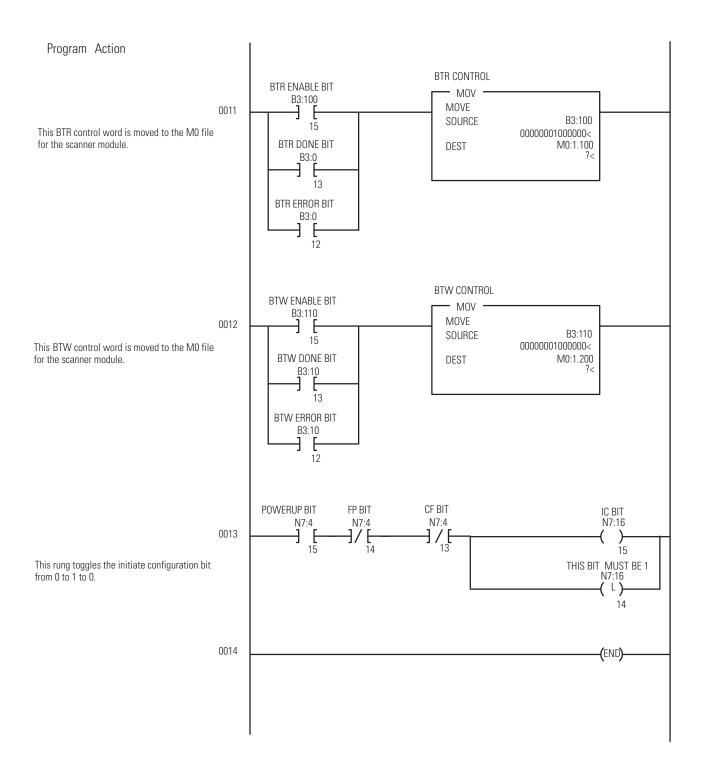
PLC-2 Programming

The 1794 analog I/O modules are not recommended for use with PLC-2* family programmable controllers due to the number of digits needed for high resolution.

SLC-5 Programming

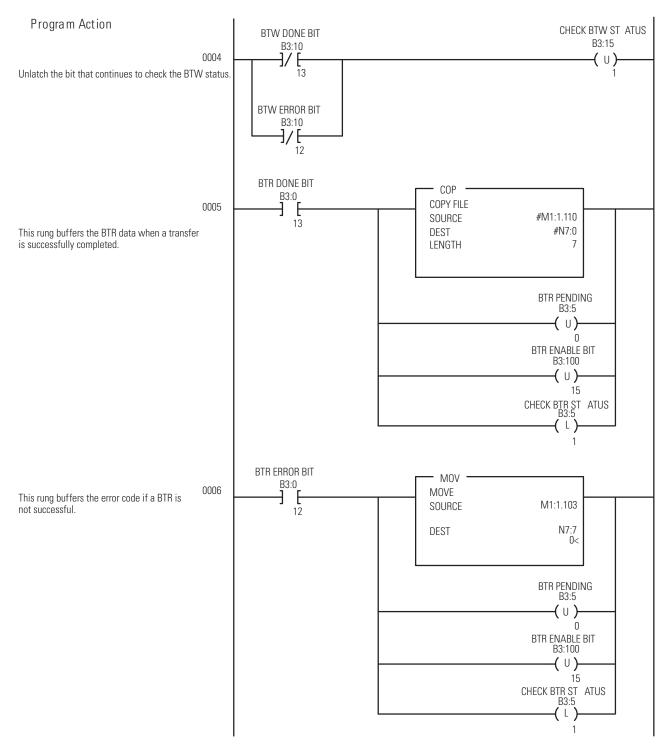

The SLC-5 programs (using the 1747-SN scanner) follow the same logic as the PLC-5 family programs in the previous examples. Differences occur in the implementation of block transfers due to the use of "M" files in the SLC™ system.

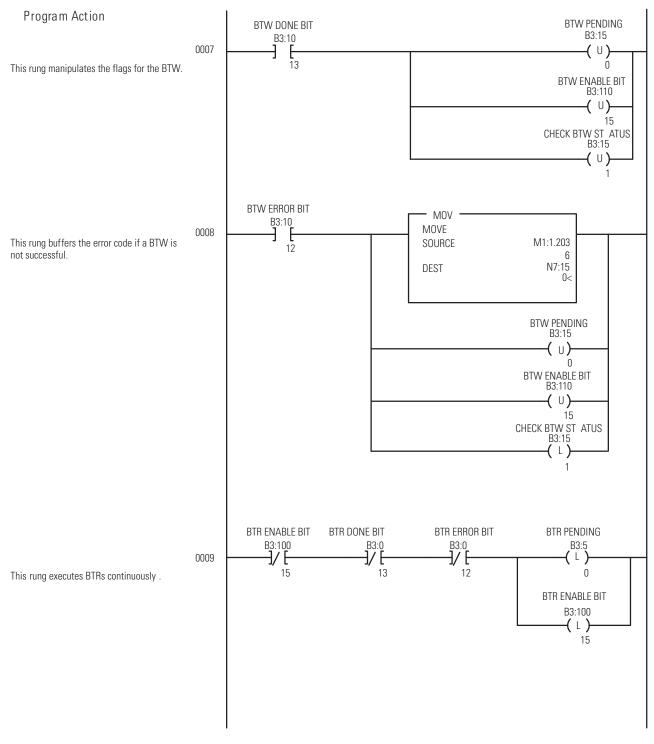

Configuration data for the FLEX I/O isolated analog modules and the 1747-SN scanner must be in place before executing the following programs. Chapter 4 contains information on the isolated analog module configurations.

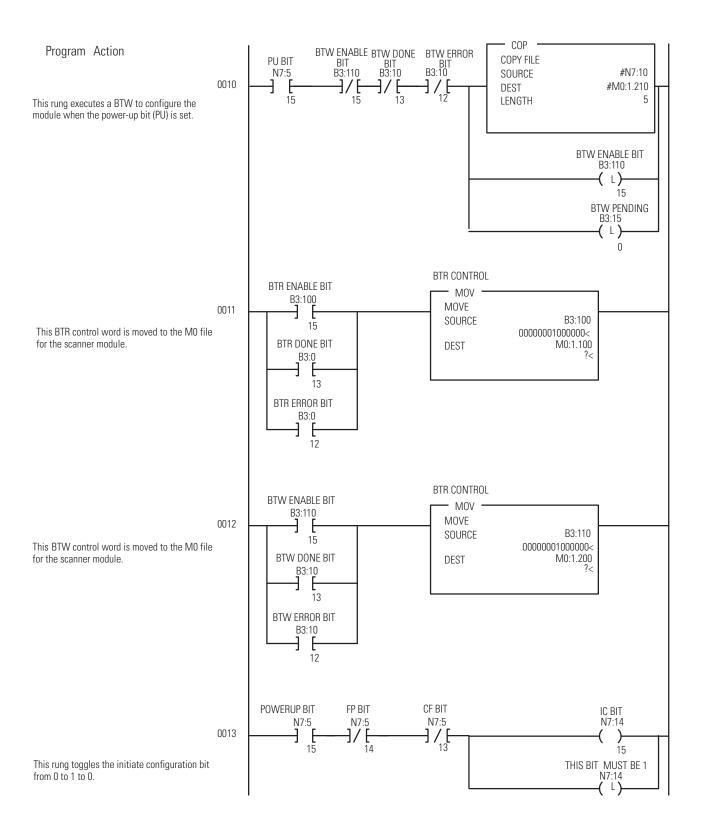

For more information on using the 1747-SN scanner module and block transfer programming, refer to publication <u>1747-IN060</u>, Remote I/O Scanner User Manual.

BTR_CONTROL Program Action PowerUp Bit **-** COP S2:1 **COPY FILE** 0000 SOURCE #B3:100 15 This rung configures the block transfer operation type, length, and RIO address at power-up. Bit DEST #M0:1.100 LENGTH 3 B3:100/7 must be set to 1 to indicate a BTR and bit B3:110/7 must be 0 to indicate a BTW. BTW_CONTROL **-** COP -**COPY FILE** #B3:110 SOURCE #M0:1.200 DEST LENGTH BTR PENDING COP **COPY FILE** 0001 #M1:1.100 SOURCE BTR status is copied to the B3:0 area when a BTR #B3:0 DEST is in progress. 4 LENGTH CHECK BTR ST ATUS B3:5 CHECK BTR ST ATUS BTR DONE BIT B3:5 B3:0 0002 Unlatch the bit that continues to check the BTR status. BTR ERROR BIT B3:0 12 BTW PENDING COP · B3:15 **COPY FILE** 0003 #M1:1.200 SOURCE BTW status is copied to the B3:100 area when a #B3:10 DEST BTW is in progress. LENGTH 4 CHECK BTW ST ATUS B3:15 CHECK BTW ST ATUS BTW DONE BIT B3:15 B3:10 Unlatch the bit that continues to check the BTW status BTW ERROR BIT B3:10 To next page.

Figure 3.17 SLC Programming for the 1794-OF4I Isolated Analog Output Module



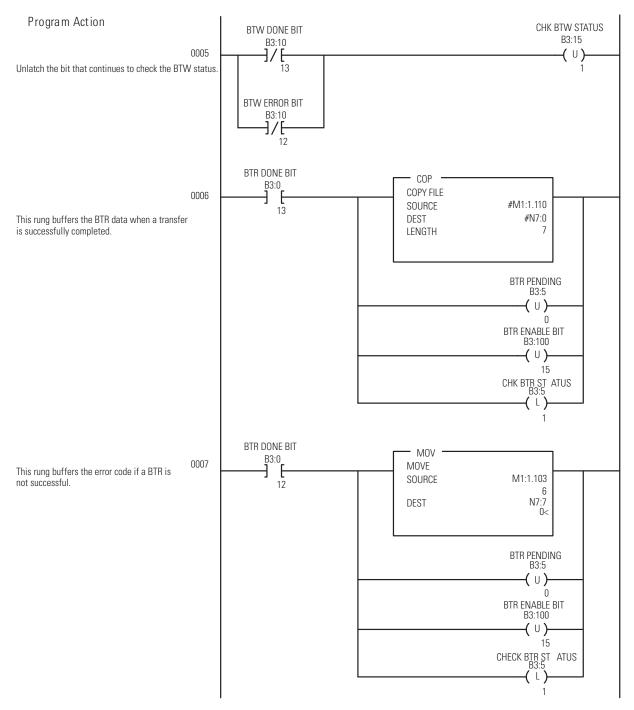



BTR_CONTROL Program Action PowerUp Bit - COP S2:1 **COPY FILE** 0000 #B3:100 SOURCE This rung configures the block transfer operation type, length, and RIO address at power-up. Bit DEST #M0:1.100 LENGTH 3 B3:100/7 must be set to 1 to indicate a BTR and bit B3:110/7 must be 0 to indicate a BTW. BTW_CONTROL - COP **COPY FILE** #B3:110 SOURCE #M0:1.200 DEST LENGTH 3 BTR PENDING COP **COPY FILE** 0001 SOURCE #M1:1.100 BTR status is copied to the B3:0 area when a BTR #B3:0 DEST is in progress. LENGTH 4 CHECK BTR ST ATUS B3:5 CHECK BTR ST ATUS B3:5 BTR DONE BIT B3:0 0002 Unlatch the bit that continues to check the BTR status. BTR ERROR BIT B3:0 BTW PENDING COP **COPY FILE** 0003 SOURCE #M1:1.200 BTW status is copied to the B3:100 area when a #B3:10 DEST BTW is in progress. 4 LENGTH CHECK BTW ST ATUS B3:15

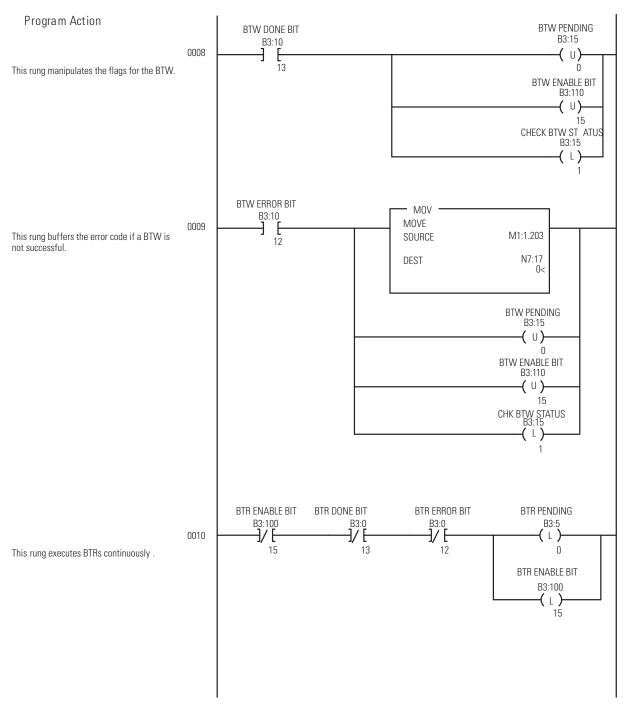
To next page.

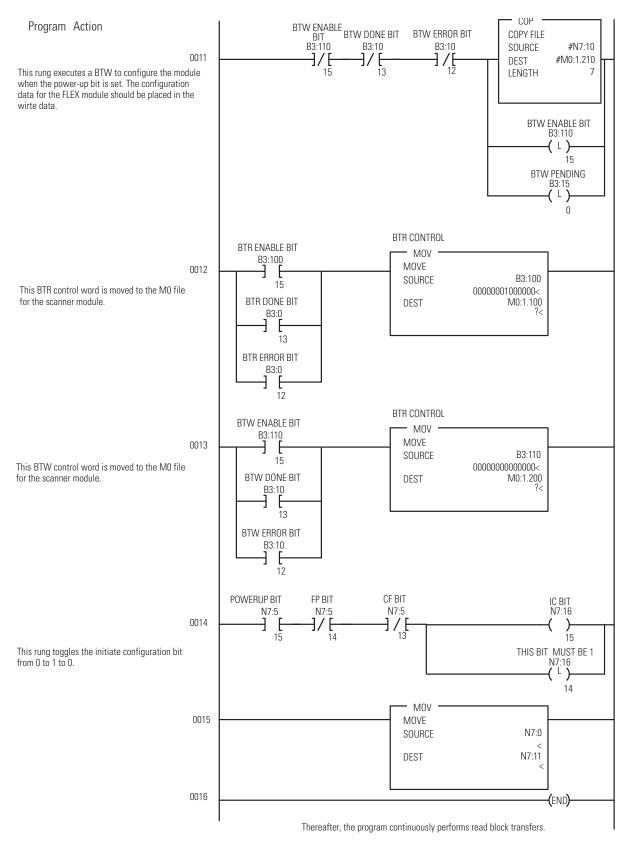
Figure 3.18 SLC Programming for the 1794-IF4I Isolated Analog Input Module

Program Action BTR_CONTROL PowerUp Bit - COP -COPY FILE 0000 SOURCE #B3:100 This rung configures the block transfer operation type, length, and RIO address at power-up. Bit #M0:1.100 DEST LENGTH B3:100/7 must be set to 1 to indicate a BTR and bit B3:110/7 must be 0 to indicate a BTW. BTW_CONTROL - COP · COPY FILE #B3:110 **SOURCE** #M0:1.200 DEST 3 LENGTH BTR PENDING - COP **COPY FILE** 0001 #M1:1.100 SOURCE BTR status is copied to the B3:0 area when a BTR #B3:0 DEST is in progress. 4 LENGTH CHK BTR ST ATUS B3:5 CHK BTR ST ATUS BTR DONE BIT B3:5 B3:0 (U) 0002 Unlatch the bit that continues to check the BTR status. BTR ERROR BIT B3:0]/[12 BTW PENDING COP -COPY FILE 0003 #M1:1.100 SOURCE BTW status is copied to the B3:100 area when a #B3:0 DEST BTW is in progress. LENGTH CHK BTW STATUS B3:5 BTW PENDING COP B3:15 **COPY FILE** 0004 #M1:1.200 SOURCE #B3:10 DEST


CHK BTW STATUS B3:15

To next page.


Figure 3.19 SLC Programming for the 1794-IF2XOF2I Isolated Analog Input/Output Module


4

LENGTH

To next page.

Chapter Summary

In this chapter, you learned how to program your programmable controller. You were given sample programs for your PLC-3 and PLC-5 family processors.

Write Configuration to and Reading Status from Your Module with a Remote I/O Adapter

What This Chapter Contains In this chapter, we tell you about:

For Information On	See Page
Configure Your Analog Module	51
Range Selection	52
Safe State Selection	52
Data Format	53
Real Time Sampling	53
Input Filtering	54
Read Data from Your Module	55
Map Data for the Analog Modules	55
Chapter Summary	73

Configure Your Analog Module

Because of the many analog devices available and the wide variety of possible configurations, you must configure your module to conform to the analog device and specific application that you have chosen. The module is configured using a group of data table words that are transferred to the module using a block-transfer write instruction.

The software configurable features available are:

- input/output range selection
- data type (two's complement, two's complement percent, binary and offset binary)

PLC-5 family programmable controllers that use 6200 software programming tools can take advantage of the IOCONFIG utility to configure these modules. IOCONFIG uses menu-based screens for configuration without having to set individual bits in particular locations. Refer to your 6200 software literature for details.

> RSLogix family programmable controllers that use RSLogix software programming tools can take advantage of the configuration GUI to configure these modules.

Range Selection

Individual input channels are configurable to operate with the following voltage or current ranges:

Table 4.1 Range Selection

Input Channel Configuration								
Input Values	Data Format	% Underrange/ % Overrange						
Channel not configured								
420 mA	signed 2's complement	4% Under; 4% Over						
±10V	signed 2's complement	2% Under; 2% Over						
±5V	signed 2's complement	4% Under; 4% Over						
020 mA	signed 2's complement %	0% Under; 4% Over						
420 mA	signed 2's complement %	4% Under; 4% Over						
010V	signed 2's complement %	0% Under; 2% Over						
±10V	signed 2's complement %	2% Under; 2% Over						
020 mA	binary	0% Under; 4% Over						
010V	binary	0% Under; 2% Over						
05V	binary	0% Under; 4% Over						
020 mA	offset binary, 8000 H = 0 mA	4% Under; 4% Over						
420 mA	offset binary, 8000 H = 4 mA	4% Under; 4% Over						
±10V	offset binary, 8000 H = 0V	2% Under; 2% Over						
±5V	offset binary, 8000 H = 0V	4% Under; 4% Over						

You can select individual channel ranges using the designated words of the write block transfer instruction. Refer to the Bit/Word description for your particular module for word and bit numbers.

Safe State Selection

You can select the analog values that your output module will maintain in the event of a network communication error. When the enable bit is cleared by a communication error, the analog outputs will automatically switch to the values set in the safe state analog words as defined by the safe state source bits. This allows you to select a reset to 0V/0 mA, or hold the outputs at their last state when using the remote I/O adapter on remote I/O. Additionally, safe state values can be setup using ControlNet*, DeviceNet* or other network adapter.

Data Format

The input/output data exchanged between the module and the adapter is available in two's complement, two's complement percent, binary and offset binary (See Table 4.1 on page 52).

Real Time Sampling

Real time sampling (RTS) provides data gathered at precise intervals for use by the processor. You set a word in the block-transfer write data file to enable RTS.

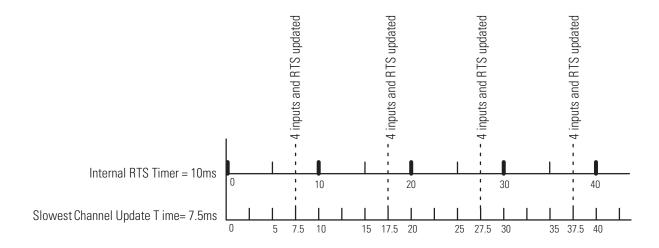
The real time sample programmed interval is the time at which updated information will be supplied to the processor. When set to "0" the module will default to each channel's fastest update rate, which is dependent on the nominal range of the input and the filter setting set to "no low pass."

When the IT interrupt toggle bit is set (1), interleaving of module interrupts occurs, ensuring exchange of critical data when channels are configured for their fastest update times. RTSI and "no low pass filter" must be 0 in order for the module to recognize this feature. This groups data update rates for all channels to the slowest configuration setting of any of the channels. In addition, channel update rates for all channels with a 7.5 ms update rate are reduced to 5.0 ms. When reset (0), real time sampling and filter features are enabled.

Table 4.2 Real Time Sample Interval

Configuration	Nominal Range	Channel Update Rate (RTS = 0) ⁽¹⁾	Channel Update Rate (RTS and Filter = 0) ⁽¹⁾ and IT = 1
1	420 mA	7.5 ms	5.0 ms
2	±10V	2.5 ms	2.5 ms
3	±5V	2.5 ms	2.5 ms
4	020 mA	7.5 ms	5.0 ms
5	420 mA	7.5 ms	5.0 ms
6	010V	5.0 ms	5.0 ms
7	±10V	5.0 ms	5.0 ms
8	020 mA	2.5 ms	2.5 ms
9	420V	7.5 ms	5.0 ms
A	010V	2.5 ms	2.5 ms
В	05V	2.5 ms	2.5 ms
С	020 mA	2.5 ms	2.5 ms
D	420 mA	7.5 ms	5.0 ms
E	±10V	2.5 ms	2.5 ms
F	±5V	2.5 ms	2.5 ms

⁽¹⁾ Channel filter set to "no low pass".


The real time sample interval can be set from 0 to 30s, in increments of 5 ms. Set the real time sample interval in binary using 15 bits in the block-transfer write word.

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Word 3	0					Real Time Sample Programmed Intervals										

The individual channel update times determine how fast you can get new information collectively from the module. The module gathers the data from each input and makes it available to the processor. For example, if channel 0 is 2.5 ms, channel 1 is 5.0 ms, and channel 2 is 7.5 ms, and RTS = 0, each channel will be updated at its stated rate. If RTS is set to 5 ms, only channels 0 and 1 are fast enough to be included in the real time sample. In order to include channel 2 in your synchronous sample, you must set the RTS to 10 ms minimum. Your updated information will be accurate for all inputs/outputs as viewed at the last update before the time of your request.

ATTENTION: Do not set your real time sample interval less than the slowest channel's update time.

Input Filtering

The input modules have selectable input filtering built into the A/D converter. The filter attenuates the input signal beginning at the specified frequency. You can select from 150, 300, 600, and 1200 Hz with low pass filters of none, 100 ms,

500 ms or 1000 ms. Each channel filter can be set individually. Select the filter based on your system requirements.

A/D Conversion Rate	Low Pass Filter
1200 Hz	No low pass
1200 Hz	100 ms low pass
1200 Hz	500 ms low pass
1200 Hz	1000 ms low pass
600 Hz	No low pass
600 Hz	100 ms low pass
600 Hz	500 ms low pass
600 Hz	1000 ms low pass
300 Hz	No low pass
300 Hz	100 ms low pass
300 Hz	500 ms low pass
300 Hz	1000 ms low pass
150 Hz	No low pass
150 Hz	100 ms low pass
150 Hz	500 ms low pass
150 Hz	1000 ms low pass

Read Data from Your Module

Read programming moves status and data from the module to the processor's data table. The processor's user program initiates the request to transfer data from the input module (or combination module) to the processor.

Map Data for the Analog Modules

The following read and write words and bit/word descriptions describe the information written to and read from the analog modules. Each word is composed of 16 bits.

8 Input Analog Module — 1794-IF4I

Module Image Input Data Channel 0 I/O Image Input Data Channel 1 Input Size Input Data Channel 2 1 to 7 Words Input Data Channel 3 Real Time Sample PU FP CF BD DN Overrange Underrange **Output Size** ΕN Set to 0 0 to 5 Words Channel Filters Channel Configuration Real Time Sample Programmed Interval TR IT RV QK CK GO Channel

Table 4.3 Analog Input Module — 1794-IF4I Read

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Read Word 0	Analo	nalog Value Channel O														
Word 1	Analo	Analog Value Channel 1														
Word 2	Analo	Analog Value Channel 2														
Word 3	Analo	g Value	Channe	el 3												
Word 4	Read	Read Time Sample														
Word 5	PU	FP	CF	0		Reser	ved		0	0	0	0	0	BD	DN	0
Word 6	0	0	0	0	0	0	0	0	V3	V2	V1	V0	U3	U2	U1	U0

Where:

PU = Power up unconfigured state

FP = Field power off

CF = In configuration mode

BD = Calibration bad

DN = Calibration accepted

U = Under range for specified channel

V = Overrange for specified channel

Table 4.4 Word/Bit Descriptions for the 1794-IF4I Analog Input Module Read

Read Word	Decimal Bit (Octal Bit)	Definition
Word 0	Bits 0015 (0017)	Channel O analog data — Real time input data per your configuration
Word 1	Bits 0015 (0017)	Channel 1 analog data — Real time input data per your configuration
Word 2	Bits 0015 (0017)	Channel 2 analog data – Real time input data per your configuration
Word 3	Bits 0015 (0017)	Channel 3 analog data – Real time input data per your configuration
Word 4	Bits 0015 (0017)	Real Time Sample . The elapsed time in increments programmed by the real time sample interval.
Word 5	Bits 00	Reserved.
	Bits 01	Calibration Done bit (DN) — This bit is set to 1 after a calibration cycle is completed.
	Bits 02	Calibration Bad bit (BD) — This bit is set to 1 if the channel calibration
	Bits 0307	Set to 0.
	Bits 0811 (1012)	Reserved.
	Bit 12 (14)	Set to 0.
	Bit 13 (15)	Configuration mode bit (CF) — This bit is set (1) when the calibration mode is selected (bit 15, word 5 in the block transfer write set to 1). When this bit is set (1), the module status indicator flashes.
	Bit 14 (16)	Field Power Off bit (FP) – This bit is set (1) when the 24V field power fails. When this bit is set (1), the module status indicator flashes.
	Bit 15 (17)	Power Up (unconfigured state) bit (PU) — This bit is set (1) when the configuration word is all zeroes (0) due to a reset (adapter power cycle or module insertion) or a cleared configuration word (all 0). When this bit is set (1), the module status indicator flashes.
Word 6	Bits 0003	Underrange bits (U) — These bits are set (1) when the input channel is below a preset limit as defined by the configuration selected. U0 (bit 00) corresponds to input channel 0 and U1 (bit 01) corresponds to input channel 1, and so on. See <u>Table 4.8</u> .
	Bits 0407	Overrange bits (V) — These bits are set (1) when the input channel is above a preset limit as defined by the configuration selected. Bit 04 corresponds to input channel 0 and bit 05 corresponds to input channel 1, and so on. See Table 4.8 .
	Bits 0815 (1017)	Not used. Set to 0.

Table 4.5 Analog Input Module — 1794-IF4I Write Configuration Block

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Word 0	EN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Word 1	Channel 3 Filter				Chann	el 2 Filt	er		Channel 1 Filter				Channel O Filter			
Word 2	Chann	iel 3 Cor	nfigurat	ion	Channel 2 Configuration				Chann	el 1 Cor	nfigurat	ion	Channel O Configuration			
Word 3	0	0 Real Time Sample Programmed Interval														
Word 4	IC	1	TR	IT	0	0	0	0	RV	QK	CK	CO	Chanr	nel Num	ber	

Where:

EN = Not used on the 1794-IF4I.

IC = Initiate configuration bit

TR = Transparent bit

IT = Interrupt Toggle bit

RV = Revert to defaults bit

QK = Quick calibration

CK = Calibration clock

GO = Gain offset select

Table 4.6 Word/Bit Descriptions for the 1794-IF4I Analog Input Module Write

Write Word	Decimal Bit (Octal Bit)	Definition						
Word 0	Bits 0014 (0016)	Not used. Set to 0.						
	Bits 15 (17)	Output enable bit (EN) — Not used in the 1794-IF4I module.						
Word 1	Channels 03	Filter Selections See Table 4.7						
	Bits 0003	Channel 0 Filter Setting						
	Bits 0407	Channel 1 Filter Setting						
	Bits 0811 (1013)	Channel 2 Filter Setting						
	Bits 1215 (1417)	Channel 3 Filter Setting						
Word 2	Channel Configuration See Table 4.8							
	Bits 0003	Channel O Configuration						
	Bits 0407	Channel 1 Configuration						
	Bits 0811 (1013)	Channel 2 Configuration						
	Bits 1215 (1417)	Channel 3 Configuration						
Word 3	Bits 0014 (0016)	Real Time Sample Interval – Programs the interval of the real time sample. Can be varied from 0 to 30 seconds (30000 decimal). Resolution is in ms with granularity in 5 ms steps.						
	Bit 15 (17)	Not used. Set to 0.						

Table 4.6 Word/Bit Descriptions for the 1794-IF4I Analog Input Module Write

Write Word	Decimal Bit (Octal Bit)	Definition
Word 4	Bits 0003	Channel calibration selection bit . When this bit is set (1), the channel can be calibrated using the calibration clock bit (CK). Bit 00 corresponds to input channel 0, bit 01 corresponds to input channel 1, bit 02 corresponds to input channel 2, bit 03 corresponds to input channel 3
	Bit 04	Gain/Offset selection bit (GO) — When this bit is cleared, a 0 to 1 to 0 transition of the CK bit performs on offset calibration. When this bit is 1, the module is directed to do a gain calibration.
	Bit 05	Calibration clock bit (CK) – When this bit is set to 1 (calibration mode), the calibration coefficient for the selected channels is accepted. When this bit is reset (0), the accepted calibration coefficients for the selected channels are stored, applied, and the calibration mode exited. Monitor status bits DN and BD for successful calibration.
	Bit 06	Quick Calibration bit (QK) — Normally reset (0). When this bit is set (1) during a calibration sequence, the calibration coefficient is stored to all related configurations for the selected channels. Note: This method of calibration quickly calibrates the selected channels, however you will not be within the rated accuracy of the module.
	Bit 07	Revert to defaults bit (RV) — Normally reset (0). When set (1) during a calibration procedure, default values for selected channels are used for the calibration coefficient. Note: You will not be within the rated accuracy of the module.
	Bits 0811 (1013)	Not used. Set to 0. For IF4ICFXT only: Bit 8 — FastStepResponse (FR) forces the A/D to skip the FIR stage if an input step occurs. An averaging algorithm is temporarily used instead of the FIR filter in the A/D to provide a quicker response. Bit 9 — FIRFilterDisable (SK) bypasses the FIR filter stage in the A/D. Bit 10 — ChopModeDisable (CH) disables the chop mode in the A/D. Chop mode is used to reduce offsets between input and output of the analog section of the A/D. Note: Module level settings that only affect 150 Hz, 300 Hz, and 600 Hz conversion rate settings Interrupt Toggle bit (IT) — This bit, when set (1), permits interleaving of module interrupts ensuring exchange of critical data when channels are configured for their fastest update times. RTSI and "no low pass filter" must be 0 in order for the module to
		recognize this feature. This groups data update rates for all channels to the slowest configuration setting of any of the channels. In addition, channel update rates for all channels with a 7.5 ms update rate are reduced to 5.0 ms. When reset (0), real time sampling and filter features are enabled.
	Bit 13 (15)	Transparent bit (TR) — This bit, when set to 1, permits configuration to be changed without using the IC bit. Default setting for this bit is True (1)
	Bit 14 (16)	Always set to 1.
	Bit 15 (17)	Initiate Configuration bit (IC) — When set (1), instructs the module to enter configuration mode. Present configuration data prior to or coincident with IC being set. Once IC returns to 0, the configuration is applied and any subsequent configuration information is ignored until IC is toggled.

Table 4.7 Set Input Filter

		•									
Bits				Channel							
03	02	01	00	Input 0							
07	06	05	04	Input 1	Input 1						
11	10	09	08	Input 2	Input 2						
15	014	13	12	Input 3							
			·	A/D Conversion Rate	Low Pass Filter						
0	0	0	0	1200 Hz	No low pass						
0	0	0	1	1200 Hz	100 ms low pass						
0	0	1	0	1200 Hz	500 ms low pass						
0	0	1	1	1200 Hz	1000 ms low pass						
0	1	0	0	600 Hz	No low pass						
0	1	0	1	600 Hz	100 ms low pass						
0	1	1	0	600 Hz	500 ms low pass						
0	1	1	1	600 Hz	1000 ms low pass						
1	0	0	0	300 Hz	No low pass						
1	0	0	1	300 Hz	100 ms low pass						
1	0	1	0	300 Hz	500 ms low pass						
1	0	1	1	300 Hz	1000 ms low pass						
1	1	0	0	150 Hz	No low pass						
1	1	0	1	150 Hz	100 ms low pass						
1	1	1	0	150 Hz	500 ms low pass						
1	1	1	1	150 Hz	1000 ms low pass						

Table 4.8 Configure Your Input Module

Inp	Input Channel Configuration									
03	02	01	00	Set these bits for Channel 0						
07	06	05	04	Set these bits for Channel 1						
11	10	09	08	Set these bits for Channel 2						
15	14	13	12	Set these bits for Channel 3						

For changes in tag values like the CH bit in the IF4ICFXT to take effect, the tag either must be included in a ladder rung or a configuration download forced using the configuration tab in the RSLogix GUI.

Table 4.8 Configure Your Input Module

Bit	Bit Settings		1	Input Values	Data Format	% Underrange % Overrange	Input Range ⁽²⁾		Module Update Rate	
						Hexadecimal	Decimal	(RTSI = 0)	(RTSI = 0) IT = 1	
0	0	0	0	Channel not c	onfigured					
0	0	0	1	420 mA	signed 2's complement	4% Under; 4% Over	<0000-7878>	<0000-30840>	7.5 ms	5.0 ms
0	0	1	0	±10V	signed 2's complement	2% Under; 2% Over	<831F-7CE1>	<-31969–64969>	2.5 ms	2.5 ms
0	0	1	1	±5V	signed 2's complement	4% Under; 4% Over	<8618–79E8>	<-31208–31208>	2.5 ms	2.5 ms
0	1	0	0	020 mA	signed 2's complement %	0% Under; 4% Over	<0-2710>	<0-10000>	7.5 ms	5.0 ms
0	1	0	1	420 mA	signed 2's complement %	4% Under; 4% Over	<0-2710>	<0-10000>	7.5 ms	5.0 ms
0	1	1	0	010V	signed 2's complement %	0% Under; 2% Over	<0-2710>	<0-10000>	5.0 ms	5.0 ms
0	1	1	1	±10V	signed 2's complement %	2% Under; 2% Over	<d8f0-2710></d8f0-2710>	<-10000-10000>	5.0 ms	5.0 ms
1	0	0	0	020 mA	binary	0% Under; 4% Over	<0000-F3CF>	<0000–62415>	2.5 ms	2.5 ms
1	0	0	1	420 mA ⁽¹⁾	binary	4% Under; 4% Over	<0000–F0F1>	<0000-61684>	7.5 ms	5.0 ms
1	0	1	0	010V	binary	0% Under; 2% Over	<0000-F9C2>	<0000–63938>	2.5 ms	2.5 ms
1	0	1	1	05V	binary	0% Under; 4% Over	<0000-F3CF>	<0000–62415>	2.5 ms	2.5 ms
1	1	0	0	020 mA	offset binary, 8000 H = 0 mA	4% Under; 4% Over	<0618–F9E8>	<1560-63976>	2.5 ms	2.5 ms
1	1	0	1	420 mA	offset binary, 8000 H = 4 mA	4% Under; 4% Over	<8000–F878>	<32768–63608>	7.5 ms	5.0 ms
1	1	1	0	±10V	offset binary, 8000 H = 0V	2% Under; 2% Over	<031F–FCE1>	<799–64737>	2.5 ms	2.5 ms
1	1	1	1	±5V	offset binary, 8000 H = 0V	4% Under; 4% Over	<0618–F9E8>	<1560-63976>	2.5 ms	2.5 ms

⁽¹⁾ Underrange for 4...20 mA occurs in the blind area below 0 (3.2 mA).

 $^{^{(2)} \}quad <$ and > indicate the overrun beyond actual range (about 5%).

4 Isolated Output Analog Module — 1794-0F4II

Read Back Channel 0 Read Back Channel 1 Read Back Channel 2 Read Back Channel 3 PU FP CF BD DN Hold Outputs Wire-off

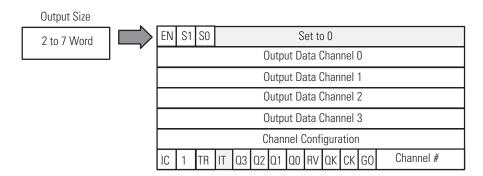


Table 4.9 Analog Output Module — 1794-OF4I Read

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Read Word 0	Analo	g Value	Channe	el O	•				•			•		•	•	
Word 1	Analo	g Value	Channe	el 1												
Word 2	Analo	g Value	Channe	el 2												
Word 3	Analo	g Value	Channe	el 3												
Word 4	PU	FP	CF	0		Reser	ved		0	0	0	0	0	BD	DN	0
Word 5	0	0	0	0	P3	P2	P1	P0	0	0	0	0	W3	W2	W1	W0

Where:

PU = Power up unconfigured state

FP = Field power off

CF = In configuration mode

BD = Calibration bad

DN = Calibration accepted

P0...P3 = Output holding in response to Q0...Q3

W0...W3 = Wire off current loop status for channels 0...3 respectively. (Not used on voltage outputs.)

Table 4.10 Word/Bit Descriptions for the 1794-0F4I Analog Output Module Read

Read Word	Decimal Bit (Octal Bit)	Definition
Word 0	Bits 0015 (0017)	Read Back Channel 0 — During normal operation, it is a copy of the output of channel 0. During an EN transition, it is the condition of the output as determined by S1 and S0. Read back is an image of what the user has sent as output to the module; no checks are performed on the data.
Word 1	Bits 0015 (0017)	Read Back Channel 1 — During normal operation, it is a copy of the output of channel 1. During an EN transition, it is the condition of the output as determined by S1 and S0. Read back is an image of what the user has sent as output to the module; no checks are performed on the data.
Word 2	Bits 0015 (0017)	Read Back Channel 2 — During normal operation, it is a copy of the output of channel 2. During an EN transition, it is the condition of the output as determined by S1 and S0. Read back is an image of what the user has sent as output to the module; no checks are performed on the data.
Word 3	Bits 0015 (0017)	Read Back Channel 3 — During normal operation, it is a copy of the output of channel 3. During an EN transition, it is the condition of the output as determined by S1 and S0. Read back is an image of what the user has sent as output to the module; no checks are performed on the data.
Word 4	Bits 00	Reserved.
	Bits 01	Calibration Done bit (DN) — This bit is set to 1 after a calibration cycle is completed.
	Bits 02	Calibration Bad bit (BD) – This bit is set to 1 if the channel calibration coefficients cannot be saved or read properly.
	Bits 0307	Set to 0.
	Bits 0811 (1012)	Reserved.
	Bit 12 (14)	Set to 0.
	Bit 13 (15)	Configuration mode bit (CF) – This bit is set (1) when the configuration mode is selected (bit 15, word 5 in the block transfer write set to 1). When this bit is set, the module status indicator flashes.
	Bit 14 (16)	Field Power Off bit (FP) — This bit is set (1) when the 24V field power fails. When this bit is set (1), the module status indicator flashes.
	Bit 15 (17)	Power Up (unconfigured state) bit (PU) – This bit is set (1) when the configuration word is all zeroes (0) due to a reset (adapter power cycle or module insertion) or a cleared configuration word (all 0). When this bit is set, the module status indicator flashes.

Table 4.10 Word/Bit Descriptions for the 1794-OF4I Analog Output Module Read

Read Word	Decimal Bit (Octal Bit)	Definition
Word 5	Bits 0003	Wire-Off status bits. (W) — These bits, when set (1), indicate the corresponding current output channel is open. W0 corresponds to channel 0, W1 corresponds to channel 2, and so on.
	Bits 0407	Set to 0.
	Bits 1011 (1213)	Hold output bits (P) — These bits are set (1) in response to Q0 or Q1 and a transition of the EN bit. When P0 or P1 is set (1), they indicate that the output is holding at the level in the readback data for the respective channel. These bits return to 0 when the output data matches the readback output data.
	Bits 1215 (1417)	Set to 0.

Table 4.11 Analog Output Module — 1794-0F4l Write Configuration Block

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Write Word 0	EN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Word 1	Outpu	t Data -	- Chann	el 0		•	•	•	•		•	•	•		•	•
Word 2	Outpu	t Data -	- Chann	el 1												
Word 3	Outpu	t Data -	- Chann	el 2												
Word 4	Output Data – Channel 3															
Word 5	Outpu	t Ch 3 C	Configur	ation	Outpu	t Ch 3 2	2 Config	uration	Outpu	ıt Ch 3 1	Config	uration	Outpu	ıt Ch 3 (0 Config	juration
Word 6	IC	1	TR	IT	0	0	0	0	RV	QK	CK	CO	CO Channel Number			

Where:

EN = Enable outputs; 0 = output follows S1/S0, 1 = output enabled

IC = Initiate configuration bit

TR = Transparent bit

IT = Interrupt Toggle bit

Q0...3 = Request for outputs to hold

RV = Revert to defaults bit

QK = Quick calibration

CK = Calibration clock

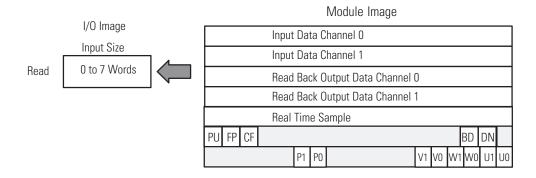
GO = Gain offset select

Table 4.12 Range Selection Bits/Real Time Output Update – 1794-0F4I Isolated Output Module

Con	Configuration Bits			Nominal	Data Type	Output Values	Update		
MSI	MSD)	Range		Hexadecimal	Decimal	Rate	
0	0	0	1	420 mA	signed 2's complement	<0000-7878>	<0000-30840>	5.0 ms	
0	0	1	0	±10V	signed 2's complement	<8618–79E8>	<-31208–31208>	2.5 ms	
0	0	1	1	±5V	signed 2's complement	<8618–79E8>	<-31208–31208>	2.5 ms	

Table 4.12 Range Selection Bits/Real Time Output Update — 1794-0F4I Isolated Output Module

Con	figura	ation	Bits	Nominal	Data Type	Output Values		Update
MS	D	LSE)	Range		Hexadecimal	Decimal	Rate
0	1	0	0	020 mA	signed 2's complement %	<0-2710>	<0-10000>	5.0 ms
0	1	0	1	420 mA	signed 2's complement %	<0-2710>	<0-10000>	5.0 ms
0	1	1	0	010V	signed 2's complement %	<0-2710>	<0-10000>	5.0 ms
0	1	1	1	±10V	signed 2's complement %	<d8f0-2710></d8f0-2710>	<-10000-10000>	5.0 ms
1	0	0	0	020 mA	binary	<0000-F3CF>	<0000-62415>	2.5 ms
1	0	0	1	420 mA	binary	<0000-F0F1>	<0000-61681>	5.0 ms
1	0	1	0	010V	binary	<0000-F3CF>	<0000-62415>	2.5 ms
1	0	1	1	05V	binary	<0000-F3CF>	<0000-62415>	2.5 ms
1	1	0	0	020 mA	offset binary	<8000–F9E8>	<32768–63976>	2.5 ms
1	1	0	1	420 mA	offset binary	<8000–F878>	<32768–63608>	5.0 ms
1	1	1	0	±10V	offset binary	<0618–F9E8>	<1560–63976>	2.5 ms
1	1	1 1 1 ±5V		±5V	offset binary	<0618–F9E8>	<1560–63976>	2.5 ms


Table 4.13 Word/Bit Descriptions for the 1794-OF4I Analog Output Module Write

Write Word	Decimal Bit (Octal Bit)	Definition
Word 0	Bits 0012 (0014)	Not used.
	Bits 1314 (1516)	Safe State Source bits (S1/S0) – When EN is 0, these bits designate the source of the safe state data. Bit 13 = 0, bit 14 = 1 – reset outputs to 0V/0mA (used with 1794-ASB/C) Bit 13 = 1, bit 14 = 1 – hold output at its current level (used with 1794-ASB/C) Bit 13 = 0; bit 14 = 0 – Safe state data is in output data words
	Bits 15 (17)	Output enable bit (EN) — When set (1), the outputs are enabled. This bit must be set in order for the real time data to appear at the outputs. If this bit is not set (0), the outputs will be determined by S1/S0.
Word 1	Bits 0015 (0017)	Channel 0 output data — The output data is real time data formatted to the selected configuration. This data is also safe state data when directed by S1 and S0.
Word 2	Bits 0015 (0017)	Channel 1 output data — The output data is real time data formatted to the selected configuration. This data is also safe state data when directed by S1 and S0.
Word 3	Bits 0015 (0017)	Channel 2 output data — The output data is real time data formatted to the selected configuration. This data is also safe state data when directed by S1 and S0.
Word 4	Bits 0015 (0017)	Channel 3 output data – The output data is real time data formatted to the selected configuration. This data is also safe state data when directed by S1 and S0.
Word 5	Channel Config	uration
	Bits 0003	Channel O Configuration
	Bits 0407	Channel 1 Configuration
	Bits 0811 (1013)	Channel 2 Configuration
	Bits 1215 (1417)	Channel 3 Configuration

Table 4.13 Word/Bit Descriptions for the 1794-OF4I Analog Output Module Write

Write Word	Decimal Bit (Octal Bit)	Definition
Word 6	Bits 0003	Channel calibration selection bit. When this bit is set (1), the channel can be calibrated using the calibration clock bit (CK). Bit 00 corresponds to output channel 0, bit 01 corresponds to output channel 1, it 02 corresponds to output channel 3, bit 03 corresponds to output channel 4.
	Bit 04	Gain/Offset selection bit (G0) — When this bit is cleared, a 0 to 1 to 0 transition of the CK bit performs on offset calibration. When this bit is 1, the module is directed to do a gain calibration.
	Bit 05	Calibration clock bit (CK) — When this bit is set to 1 (calibration mode), the calibration coefficient for the selected channels is accepted. When this bit is reset (0), the accepted calibration coefficients for the selected channels are stored, applied, and the calibration mode exited. Monitor status bits DN and BD for successful calibration.
	Bit 06	Quick Calibration bit (QK) — Normally reset (0). When this bit is set (1) during a calibration sequence, the calibration coefficient is stored to all related configurations for the selected channels. Note: Although this method of calibration quickly calibrates the selected channels, they will not be within the rated accuracy of the module.
	Bit 07	Revert to defaults bit (RV) — Normally reset (0). When set (1) during a calibration procedure, default values for selected channels are used for the calibration coefficient. Note: They will not be within the rated accuracy of the module.
	Bits 0811 (1013)	Request for hold outputs (Q) — Channel request bits that instruct an output to hold its output level when EN transitions from 1 to 0 to 1. When EN is 0, outputs go to a safe state dictated by S1/S0. When EN returns to 1, the outputs will hold their level until the output data equals the output level. P0—P3 indicates channels holding. Output read back data shows what level is being held. Q0 = bit 08 (10) = channel 0; Q1 = bit 09 (11) = channel 1, and so on.
	Bit 12 (14)	Interrupt Toggle bit (IT) — This bit, when set (1), permits interleaving of module interrupts ensuring exchange of critical data when channels are configured for their fastest update times. RTSI and "no low pass filter" must be 0 in order for the module to recognize this feature. This groups data update rates for all channels to the slowest configuration setting of any of the channels. In addition, channel update rates for all channels with a 7.5 ms update rate are reduced to 5.0 ms. When reset (0), real time sampling and filter features are enabled.
	Bit 13 (15)	Transparent bit (TR) – This bit, when set to 1, permits configuration to be changed without using the IC bit.
	Bit 14 (16)	Set to 1.
	Bit 15 (17)	Initiate Configuration bit (IC) — When set (1), instructs the module to enter configuration mode. Present configuration data prior to or coincident with IC being set. Once IC returns to 0, the configuration is applied and any subsequent configuration information is ignored until IC is toggled.

2 Input/2 Output Analog Combo Module — 1794-IF2XOF2I

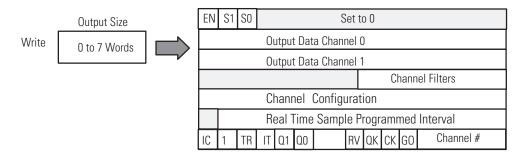


Table 4.14 Analog Combo Module — 1794-IF2XOF2I Read

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Read Word 0	Input	Data Ch	annel 0			•			•	•	•					
Word 1	Input	Data Ch	annel 1													
Word 2	Read Back Output Channel 0															
Word 3	Read	Back Ou	ıtput Ch	annel 1												
Word 4	0 Real Time Sample															
Word 5	PU	FP	CF	0	Reser	ved			0	0	0	0	0	BD	DN	0
Word 6	0	0	0	0	P1	P0	0	0	0	0	V1	V0	W1	W0	U1	U0

Where:

PU = Power up unconfigured state

FP = Field power off

CF = In configuration mode

BD = Calibration bad

DN = Calibration accepted

P0 and P1 = Output holding in response to Q0...Q1

W0 and W1 = Wire off current loop status for input channels 0 and 1 respectively. (Not used on voltage outputs.)

U0 and U1 = Underrange for input channels o and 1 respectively.

V0 and V1 = Overrange for input channels o and 1 respectively.

Table 4.15 Configure Your Input Channels

•	Inp	ut C	hanı	nel C	onfiguration							
,	03	02	01	00	Set these bits f	or Channel 0						
•	07	06	05	04	Set these bits f	or Channel 1						
•	Bit	Set	ings	•	Input Values	Data Format	% Underrange	Input Range ⁽²⁾		Module Update Rate		
					values		% Overrange	Hexadecimal	Decimal	(RTSI = 0)	(RTSI = 0) IT = 1	
•	0	0	0	0	Channel not c							
•	0	0	0	1	420 mA	signed 2's complement	4% Under; 4% Over	<0000-7878>	<0000-30840>	7.5 ms	5.0 ms	
	0	0	1	0	±10V	signed 2's complement	2% Under; 2% Over	<831F-7CE1>	<-31969–64969>	2.5 ms	2.5 ms	
	0	0	1	1	±5V	signed 2's complement	4% Under; 4% Over	<8618–79E8>	<-31208–31208>	2.5 ms	2.5 ms	
	0	1	0	0	020 mA	signed 2's complement %	0% Under; 4% Over	<0-2710>	<0-10000>	7.5 ms	5.0 ms	
	0	1	0	1	420 mA	signed 2's complement %	4% Under; 4% Over	<0–2710>	<0-10000>	7.5 ms	5.0 ms	
	0	1	1	0	010V	signed 2's complement %	0% Under; 2% Over	<0–2710>	<0-10000>	5.0 ms	5.0 ms	
	0	1	1	1	±10V	signed 2's complement %	2% Under; 2% Over	<d8f0-2710></d8f0-2710>	<-10000-10000>	5.0 ms	5.0 ms	
	1	0	0	0	020 mA	binary	0% Under; 4% Over	<0000-F3CF>	<0000-62415>	2.5 ms	2.5 ms	
	1	0	0	1	420 mA ⁽¹⁾	binary	4% Under; 4% Over	<0000–F0F1>	<0000–61681>	7.5 ms	5.0 ms	
	1	0	1	0	010V	binary	0% Under; 2% Over	<0000-F9C2>	<0000-63938>	2.5 ms	2.5 ms	
	1	0	1	1	05V	binary	0% Under; 4% Over	<0000-F3CF>	<0000-62415>	2.5 ms	2.5 ms	
	1	1	0	0	020 mA	offset binary, 8000 H = 0 mA	4% Under; 4% Over	<0618–F9E8>	<1560–63976>	2.5 ms	2.5 ms	
•	1	1	0	1	420 mA	offset binary, 8000 H = 4 mA	4% Under; 4% Over	<8000–F878>	<32768–63608>	7.5 ms	5.0 ms	
•	1	1	1	0	±10V	offset binary, 8000 H = 0 mA	2% Under; 2% Over	<031F–FCE1>	<799–64737>	2.5 ms	2.5 ms	
•	1	1	1	1	±5V	offset binary, 8000 H = 0 mA	4% Under; 4% Over	<0618–F9E8>	<1560–63976>	2.5 ms	2.5 ms	

⁽¹⁾ Underrange for 4...20 mA occurs in the blind area below 0 (3.2 mA).

 $^{^{(2)}~&}lt;$ and > indicate the overrun beyond actual range (about 5%).

Table 4.16 Set Input Filter

Bits				Channel						
03	02	01	00	Input Channel 0						
07	06	05	04	Input Channel 1						
				A/D Conversion Rate	Low Pass Filter					
0	0	0	0	1200 Hz	No low pass					
0	0	0	1	1200 Hz	100 ms low pass					
0	0	1	0	1200 Hz	500 ms low pass					
0	0	1	1	1200 Hz	1000 ms low pass					
0	1	0	0	600 Hz	No low pass					
0	1	0	1	600 Hz	100 ms low pass					
0	1	1	0	600 Hz	500 ms low pass					
0	1	1	1	600 Hz	1000 ms low pass					
1	0	0	0	300 Hz	No low pass					
1	0	0	1	300 Hz	100 ms low pass					
1	0	1	0	300 Hz	500 ms low pass					
1	0	1	1	300 Hz	1000 ms low pass					
1	1	0	0	150 Hz	No low pass					
1	1	0	1	150 Hz	100 ms low pass					
1	1	1	0	150 Hz	500 ms low pass					
1	1	1	1	150 Hz	1000 ms low pass					

Table 4.17 Word/Bit Descriptions for the 1794-IF2XOF2I Isolated Analog Combo Module Read

Read Word	Decimal Bit (Octal Bit)	Definition			
Word 0	Bits 0015 (0017)	Input Channel 0 input data — Real time input data per your configuration			
Word 1	Bits 0015 (0017)	Input Channel 1 input data — Real time input data per your configuration			
Word 2	Bits 0015 (0017)	Read Back Output Channel 0 — During normal operation, it is a copy of the output of channel 0. During an EN transition, it is the condition of the output as determined by S1 and S0. Note: Read back data is an image of what the user has sent as output to the module; no checks are performed on the data.			
Word 3 Bits 0015 (0017)		Read Back Output Channel 1 — During normal operation, it is a copy of the output of channel 1. During an EN transition, it is the condition of the output as determined by S1 and S0. Note: Read back data is an image of what the user has sent a output to the module; no checks are performed on the data.			
Word 4	Bits 0015 (0017)	Real Time Sample. The elapsed time in increments programmed by the real time sample interval.			

Table 4.17 Word/Bit Descriptions for the 1794-IF2X0F2I Isolated Analog Combo Module Read

Read Word	Decimal Bit (Octal Bit)	Definition				
Word 5	Bits 00	Reserved.				
	Bits 01	Calibration Done bit (DN) — This bit is set to 1 after a calibration cycle is completed.				
	Bits 02	Calibration Bad bit (BD) — This bit is set to 1 if the channel calibration coefficients cannot be saved or read properly.				
	Bits 0307	Set to 0.				
	Bits 0811 (1012)	Reserved.				
	Bit 12 (14)	Set to 0.				
	Bit 13 (15)	Configuration mode bit (CF) — This bit is set (1) when the configuration mode is selected (bit 15, word 6 in the block transfer write set to 1). When this bit is set (1), the module status indicator flashes.				
	Bit 14 (16)	Field Power Off bit (FP) – This bit is set (1) when the 24V field power fails. When this bit is set (1), the module status indicator flashes.				
	Bit 15 (17)	Power Up (unconfigured state) bit (PU) — This bit is set (1) when the configuration word is all zeroes (0) due to a reset (adapter power cycle or module insertion) or a cleared configuration word (all 0). When this bit is set (1), the module status indicator flashes.				
Word 6	Bits 0001	Underrange bits (U) — These bits are set (1) when the input channel is below a preset limit as defined by the configuration selected. U0 (bit 00) corresponds to input channel 0 and U1 (bit 01) corresponds to input channel 1, and so on. See Table 4.15 .				
	Bits 0203	Wire-Off status bits. (W) — These bits, when set (1), indicate the corresponding current output channel is open. W0 corresponds to channel 0, W1 corresponds to channel 2, and so on.				
	Bits 0405	Overrange bits (V) — These bits are set (1) when the input channel is above a preset limit as defined by the configuration selected. Bit 04 corresponds to input channel 0 and bit 05 corresponds to input channel 1. See Table 4.15				
	Bits 0609 (0611)	Not used. Set to 0.				
	Bits 1011 (1213)	Hold output bits (P) — These bits are set (1) in response to Q0 or Q1 and a transition of the EN bit. When P0 or P1 is set (1), they indicate that the output is holding at the level in the readback data for the respective channel. These bits return to 0 when the output data matches the readback output data.				
	Bits 1215 (1417)	Not used. Set to 0.				

Table 4.18 Analog Combo Module — 1794-IF2XOF2I Read

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Write Word 0	EN	S1	S0	0	0	0	0	0	0	0	0	0	0	0	0	0
Word 1	Output Data — Channel 0															
Word 2	Output Data — Channel 1															
Word 3	0	0	0	0	0	0	0	0	Input Ch 1 Filter Input Ch 0 Filter							
Word 4	Outpu	Output Ch 1 Configuration Output Ch 0 2 Configuration Output Ch 1 Configuration Output Ch 0 Configuration							ration							
Word 5	0 Real Time Sample Programmed Interval															
Word 6	IC	1	TR	IT	Q1	02	0	0	RV	QK	CK	GO	Input	Ch O Co	onfigura	ition

Where:

EN = Enable outputs; 0 = output follows S1/S0, 1 = output enabled

IC = Initiate configuration bit

IT = Interrupt Toggle bit

TR = Transparent bit

QO and Q1 = Request for outputs to hold

RV = Revert to defaults bit

QK = Quick calibration

CK = Calibration clock

GO = Gain offset select

Table 4.19 Configure Your Outputs for the 1794-IF2XOF2I Analog Combo Module

	Configuration Bits		Nominal Range	Data Type Output Values ⁽¹⁾			Update Rate	
MS	D	LSE)	1		Hexadecimal	Decimal	
0	0	0	1	420 mA	signed 2's complement	<0000-7878>	<0000-30840>	5.0 ms
0	0	1	0	±10V	signed 2's complement	<8618–79E8>	<-31208–31208>	2.5 ms
0	0	1	1	±5V	signed 2's complement	<8618–79E8>	<-31208–31208>	2.5 ms
0	1	0	0	020 mA	signed 2's complement %	<0-2710>	<0-10000>	5.0 ms
0	1	0	1	420 mA	signed 2's complement %	<0-2710>	<0-10000>	5.0 ms
0	1	1	0	010V	signed 2's complement %	<0-10000>	<0-10000>	5.0 ms
0	1	1	1	±10V	signed 2's complement %	<d8f0-2710></d8f0-2710>	<-10000–10000>	5.0 ms
1	0	0	0	020 mA	binary	<0000-F3CF>	<0000-62415>	2.5 ms
1	0	0	1	420 mA	binary	<0000-F0F1>	<0000-61681>	5.0 ms
1	0	1	0	010V	binary	<0000-F3CF>	<0000-62415>	2.5 ms
1	0	1	1	05V	binary	<0000-F3CF>	<0000-62415>	2.5 ms
1	1	0	0	020 mA	offset binary	<8000-F9E8>	<32768–63976>	2.5 ms
1	1	0	1	420 mA	offset binary	<8000-F878>	<32768–63608>	5.0 ms
1	1	1	0	±10V	offset binary	<0618-F9E8>	<1560–63976>	2.5 ms
1	1	1	1	±5V	offset binary	<0618–F9E8>	<1560–63976>	2.5 ms

 $^{^{(1)}}$ < and > indicate the overrun beyond actual range (about 5%).

Table 4.20 Word/Bit Descriptions for the 1794-IF2XOF2I Analog Combo Module Write

Write Word	Decimal Bit (Octal Bit)	Definition			
Word 0	Bits 0014 (0016)	Not used.			
	Bits 1314 (1516)	Safe State Source bits (S1/S0) – When EN is 0, these bits designate the source of the safe state data.			
		Bit $13 = 0$, bit $14 = 1$ – reset outputs to $0V/0mA$ (used with $1794-ASB/C$)			
		Bit $13 = 1$, bit $14 = 1$ – hold output at its current level (used with 1794-ASB/C)			
		Bit $13 = 0$; bit $14 = 0$ — Safe state data is in output data words			
	Bits 15 (17)	Output enable bit (EN) — When set (1), the outputs are enabled. This bit must be set in order for the real time data to appear at the outputs. If this bit is not set (0), the outputs will be determined by S1/S0.			
Word 1	Bits 0015 (0017)	Channel 0 output data — See <u>Table 4.19</u>			
Word 2	Bits 0015 (0017)	Channel 1 output data – See <u>Table 4.19</u>			
Word 3	Input Channels	0 and 1 Filter Selections – See <u>Table 4.16</u>			
	Bits 0001	Channel 0 Filter Setting			
	Bits 0407	Channel 1 Filter Setting			
Word 4	Channel Config	uration — See <u>Table 4.15</u>			
	Bits 0003	Input Channel 0 Configuration – See <u>Table 4.15</u>			
	Bits 0407	Input Channel 1 Configuration – See <u>Table 4.15</u>			
	Bits 0811 (1013)	Output Channel O Configuration — See <u>Table 4.19</u>			
	Bits 1215 (1417)	Output Channel 1 Configuration — See <u>Table 4.19</u>			
Word 5	Bits 0014 (0016)	Real Time Sample Interval – Programs the interval of the real time sample. Can be varied from 0 to 30 seconds (30000 decimal). Resolution is in ms with granularity in 5 ms steps. See <u>Table 4.2</u> .			

Table 4.20 Word/Bit Descriptions for the 1794-IF2XOF2I Analog Combo Module Write

Write Word	Decimal Bit (Octal Bit)	Definition
Word 6	Bits 0003	Channel calibration selection bit . When this bit is set (1), the channel can be calibrated using the calibration clock bit (CK). Bit 00 corresponds to output channel 0, bit 01 corresponds to output channel 1, it 02 corresponds to output channel 3, bit 03 corresponds to output channel 4.
	Bit 04	Gain/Offset selection bit (G0) — When this bit is cleared, a 0 to 1 to 0 transition of the CK bit performs on offset calibration. When this bit is 1, the module is directed to do a gain calibration.
	Bit 05	Calibration clock bit (CK) — When this bit is set to 1 (calibration mode), the calibration coefficient for the selected channels is accepted. When this bit is reset (0), the accepted calibration coefficients for the selected channels are stored, applied, and the calibration mode exited. Monitor status bits DN and BD for successful calibration.
	Bit 06	Quick Calibration bit (QK) — Normally reset (0). When this bit is set (1) during a calibration sequence, the calibration coefficient is stored to all related configurations for the selected channels. Note: Although this method of calibration quickly calibrates the selected channels, they will not be within the rated accuracy of the module.
	Bit 07	Revert to defaults bit (RV) — Normally reset (0). When set (1) during a calibration procedure, default values for selected channels are used for the calibration coefficient. Note: They will not be within the rated accuracy of the module.
	Bits 0809 (1011)	Not used. Set to 0.
	Bit 1011 (1213)	Request for hold outputs (Q) — Channel request bits that instruct an output to hold its output level when EN transitions from 1 to 0 to 1. When EN is 0, outputs go to a safe state dictated by S1/S0. When EN returns to 1, the outputs will hold their level until the output data equals the output level. P0—P3 indicates channels holding. Output read back data shows what level is being held. Q0 = bit 08 (10) = channel 0; Q1 = bit 08 (10) = channel 1, and so on.
	Bit 12 (14)	Interrupt Toggle bit (IT) — This bit, when set (1), permits interleaving of module interrupts ensuring exchange of critical data when channels are configured for their fastest update times. RTSI and "no low pass filter" must be 0 in order for the module to recognize this feature. This groups data update rates for all channels to the slowest configuration setting of any of the channels. In addition, channel update rates for all channels with a 7.5 ms update rate are reduced to 5.0 ms. When reset (0), real time sampling and filter features are enabled.
	Bit 13 (15)	Transparent bit (TR) — This bit, when set to 1, permits configuration to be changed without using the IC bit.
	Bit 15 (17)	Initiate Configuration bit (IC) — When set (1), instructs the module to enter configuration mode. Present configuration data prior to or coincident with IC being set. Once IC returns to 0, the configuration is applied and any subsequent configuration information is ignored until IC is toggled.

Chapter Summary

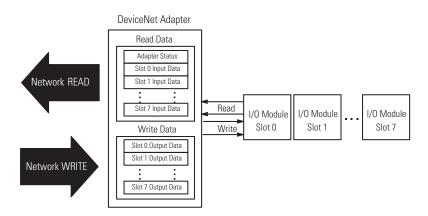
In this chapter, you read how to configure your module's features and enter your data.

Notes:

Communication and I/O Image Table Mapping with the DeviceNet/ControlNet Adapter

What This Chapter Contains Use this chapter to communicate with FLEX I/O adapters.

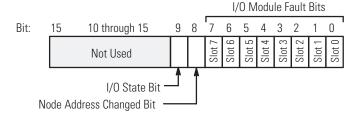
For Information On	See Page
About RSNetWorx and RSLogix	75
Polled I/O Structure	75
Map Data into the Image Table	77
Defaults	97
Chapter Summary	97


About RSNetWorx and RSLogix

RSNetWorx™ is a software tool used in conjunction with RSLogix to configure your FLEX I/O DeviceNet or ControlNetadapter and its related modules. This software tool can be connected to the adapter via the DeviceNet network. The EtherNet/IP™ adapter only requires RSLogix to configure the modules.

Polled I/O Structure

Output data is received by the adapter in the order of the installed I/O modules. The Output data for Slot 0 is received first, followed by the Output data for Slot 1, and so on up to slot 7.


The first word of input data sent by the adapter is the Adapter Status Word. This is followed by the input data from each slot, in the order of installed I/O modules. The Input data from Slot 0 is first after the status word, followed by Input data from Slot 2, and so on to slot 7.

Adapter Input Status Word

The input status word consists of:

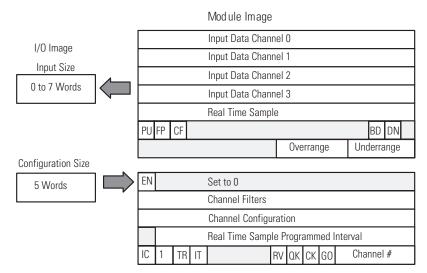
- I/O module fault bits 1 status bit for each slot
- node address changed 1 bit
- I/O status 1 bit

The adapter input status word bit descriptions are shown in the following table:

Bit Description	Bit	Explanation
I/O Module Faults	0	This bit is set (1) when an error is detected in slot position 0.
	1	This bit is set (1) when an error is detected in slot position 1.
	2	This bit is set (1) when an error is detected in slot position 2.
	3	This bit is set (1) when an error is detected in slot position 3.
	4	This bit is set (1) when an error is detected in slot position 4.
	5	This bit is set (1) when an error is detected in slot position 5.
	6	This bit is set (1) when an error is detected in slot position 6.
	7	This bit is set (1) when an error is detected in slot position 7.
Node Address Changed	8	This bit is set (1) when the node address switch setting has been changed sing power up.
I/O Status	9	Bit = 0 - idle Bit = 1 - run
	1015	Not used – sent as zeroes.

Possible causes for an **I/O Module Fault** are:

- Transmission errors on the FLEX I/O backplane
- a failed module
- a module removed from its terminal base
- incorrect module insertion in a slot position
- the slot is empty


The **node address changed** bit is set when the node address switch setting has been changed since power up. The new node address does not take affect until the adapter has been powered down and then powered back up.

Map Data into the Image Table

FLEX I/O analog modules are supported by the DeviceNet adapter.

Module Description	Catalog Number	For image table mapping refer to:
4 Input Isolated Analog Module	1794-IF4I	4 Input Isolated Analog Module — 1794-IF4I Image Table Mapping
4 Output Isolated Analog Module	1794-OF4I	4 Output Isolated Analog Module — 1794-0F4I Image Table Mapping
2 in/2 out Isolated Analog Combo Module	1794-IF2X0F2I	Isolated Analog Combo Module — 1794-IF2XOF2I Series B Image Table Mapping

4 Input Isolated Analog Module — 1794-IF4I Image Table Mapping

Set EN bit Off (0) for Configuration block

Module actions (Reset, Safe State and Hold Last State) are set using programming software.

Table 5.1 Analog Input Module — 1794-IF4I and 1794-IF4ICFXT Read

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Read Word 0	Analog	nalog Value Channel 0														
Word 1	Analog	g Value	Channe	l 1												
Word 2	Analog	g Value	Channe	12												
Word 3	Analog	Analog Value Channel 3														
Word 4	Read	Read Time Sample														

Table 5.1 Analog Input Module — 1794-IF4I and 1794-IF4ICFXT Read

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Word 5	PU	FP	CF	0		Reserv	/ed		0	0	0	0	0	BD	DN	0
Word 6	0	0	0	0	0	0	0	0	V3	V2	V1	V0	U3	U2	U1	U0

PU = Power up unconfigured state

FP = Field power off CF = In configuration mode BD = Calibration bad

DN = Calibration accepted

U = Under range for specified channel V = Overrange for specified channel

Table 5.2 Analog Input Module — 1794-IF4ICFXT Write

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Word 0	EN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Word 1	Ch 3 F	ilter	er Ch 2 Filter						Ch 1 F	ilter			Ch O Filter			
Word 2	Ch 3 C	Configur	ation		Ch 2 C	Configur	ation		Ch 1 C	Configu	ation		Ch 0 0	Configu	ration	
Word 3	0	Real T	ime Sar	mple Int	erval											
Word 4	IC	1 TR IT 0 CH DK FS RV QK CK GO Channel Number							nber							
Word 5	Reser	Reserved														

Where:

EN = Enable bit (not used on input module)

IC = Initiate Configuration bit

TR = Transparent bit

IT = Interrupt toggle bit

CH - Chop Mode Disable — use to disable the chop mode. Chop mode used by the module to reduce offset and drift errors. The default is chop mode enabled (0).

SK = FIR Filter Disable — use to disable the FIR filter. The Finite Impulse Response filter is used by the module to improve signal stability. The default is FIR filter enabled (0).

FS = Fast Step Response — use to enable a fast step response algorithm. The fast step response algorithm, upon sensing a step input, uses an averaging method rather than the FIR filter. The FIR goes back into operation once the input has settled. The default is fast step response disabled (0).

RV = Revert to default bit

QK = Quick calibration

CK = Calibration clock

GO = Gain Offset select

Table 5.3 Analog Input Module — 1794-IF4I Write Configuration Block

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Word 0	EN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Word 1	Ch 3 F	ilter			Ch 2 F	ilter			Ch 1 F	ilter			Ch 0 F	ilter		
Word 2	Ch 3 C	Configur	ation		Ch 2 C	Ch 2 Configuration			Ch 1 Configuration				Ch O Configuration			
Word 3	0	Real T	ime Sar	nple Int	erval											
Word 4	IC	1	TR	IT	0	СН	DK	FS	RV	QK	CK	G0	Chann	el Num	ber	
Word 5	Reserv	Reserved														
Word 6	Not us	Not used														
Word 7	Not us	ot used														

EN = Not used on the 1794-IF4I.

IC = Initiate configuration bit

TR = Transparent bit IT = Interrupt Toggle bit

RV = Revert to defaults bit

QK = Quick calibration

CK = Calibration clock

GO = Gain offset select

Table 5.4 Set Input Filter

Bits				Channel	
03	02	01	00	Input 0	
07	06	05	04	Input 1	
11	10	09	08	Input 2	
15	014	13	12	Input 3	
				A/D Conversion Rate	Low Pass Filter
0	0	0	0	1200 Hz	No low pass
0	0	0	1	1200 Hz	100 ms low pass
0	0	1	0	1200 Hz	500 ms low pass
0	0	1	1	1200 Hz	1000 ms low pass
0	1	0	0	600 Hz	No low pass
0	1	0	1	600 Hz	100 ms low pass
0	1	1	0	600 Hz	500 ms low pass
0	1	1	1	600 Hz	1000 ms low pass
1	0	0	0	300 Hz	No low pass

Table 5.4 Set Input Filter

Bits				Channel	
1	0	0	1	300 Hz	100 ms low pass
1	0	1	0	300 Hz	500 ms low pass
1	0	1	1	300 Hz	1000 ms low pass
1	1	0	0	150 Hz	No low pass
1	1	0	1	150 Hz	100 ms low pass
1	1	1	0	150 Hz	500 ms low pass
1	1	1	1	150 Hz	1000 ms low pass

Table 5.5 Word/Bit Descriptions for 1794-IF4I Isolated Analog Input Module

Word	Decimal Bit (Octal Bit)	Definition
Read Word 0	Bits 0015 (0017)	Channel O analog data — Real time input data per your configuration
Word 1	Bits 0015 (0017)	Channel 1 analog data — Real time input data per your configuration
Word 2	Bits 0015 (0017)	Channel 2 analog data — Real time input data per your configuration
Word 3	Bits 0015 (0017)	Channel 3 analog data — Real time input data per your configuration
Word 4	Bits 0015 (0017)	Real Time Sample . The elapsed time in increments programmed by the real time sample interval.
Word 5	Bit 00	Reserved
	Bit 01	Calibration Done bit (DN) – This bit is set to 1 after a calibration cycle is completed.
	Bit 02	Calibration Bad bit (BD) — This bit is set to 1 if the channel calibration coefficients cannot be saved or be read properly.
	Bits 0307	Set to 0.
	Bits 0811 (1013)	Reserved.
	Bit 12 (14)	Set to 0.
	Bit 13 (15)	Configuration mode bit (CF) – This bit is set (1) when the calibration mode is selected (bit 15, word 5 in the block transfer write set to 1). When this bit is set (1), the module status indicator flashes.
	Bit 14 (16)	Field Power Off bit (FP) – This bit is set (1) when the 24V field power fails. When this bit is set (1), the module status indicator flashes.
	Bit 15 (17)	Power Up (unconfigured state) bit (PU) – This bit is set (1) when the configuration word is all zeroes (0) due to a reset (adapter power cycle or module insertion) or a cleared configuration word (all 0). When this bit is set (1), the module status indicator flashes.

Table 5.5 Word/Bit Descriptions for 1794-IF4I Isolated Analog Input Module

Word	Decimal Bit (Octal Bit)	Definition					
Word 6	Bits 0003	Underrange bits (U) — These bits are set (1) when the input channel is below a preset limit as defined by the configuration selected. U0 (bit 00) corresponds to input channel 0 and U1 (bit 01) corresponds to input channel 1, and so on.					
	Bits 0407	Overrange bits (V) – These bits are set (1) when the input channel is above a preset limit as defined by the configuration selected. Bit 04 corresponds to input channel 0 and bit 05 corresponds to input channel 1, and so on.					
	Bits 0815 (1017)	Not used. Set to 0.					
Write Word 0	Bits 0014 (0016)	Not used. Set to 0.					
	Bit 15 (17)	Output enable bit (EN) — Not used in the 1794-IF4I module.					
Word 1	Channels 0 through 3 Filter Selections						
	Bits 0003	Channel 0 Filter Setting					
	Bits 0407	Channel 1 Filter Setting					
	Bits 0811 (0013)	Channel 2 Filter Setting					
	Bits 1215 (1417)	Channel 3 Filter Setting					
Word 2	Channels 0 thro	ough 3 Filter Selections					
	Bits 0003	Channel 0 Configuration					
	Bits 0407	Channel 1 Configuration					
	Bits 0811 (1013)	Channel 2 Configuration					
	Bits 1215 (1417)	Channel 3 Configuration					
Word 3	Bits 0014 (0016)	Real Time Sample Interval – Programs the interval of the real time sample. Can be varied from 0 to 30 seconds (30000 decimal). Resolution is in ms with granularity in 5 ms steps.					
	Bit 15 (17)	Not used. Set to 0.					

Table 5.5 Word/Bit Descriptions for 1794-IF4I Isolated Analog Input Module

Word	Decimal Bit (Octal Bit)	Definition
Word 4	Bits 0003	Channel calibration selection bit . When this bit is set (1), the channel can be calibrated using the calibration clock bit (CK). Bit 00 corresponds to input channel 0, bit 01 corresponds to input channel 1, it 02 corresponds to input channel 2, bit 03 corresponds to input channel 3.
	Bit 04	Gain/Offset selection bit (G0) — When this bit is cleared, a 01 to 0 transition of the CK bit performs on offset calibration. When this bit is 1, the module is directed to do a gain calibration.
	Bit 05	Calibration clock bit (CK) — When this bit is set to 1 (calibration mode), the calibration coefficient for the selected channels is accepted. When this bit is reset (0), the accepted calibration coefficients for the selected channels are stored, applied, and the calibration mode exited. Monitor status bits DN and BD for successful calibration.
	Bit 06	Quick Calibration bit (QK) — Normally reset (0). When this bit is set (1) during a calibration sequence, the calibration coefficient is stored to all related configurations for the selected channels. Note: This method of calibration quickly calibrates the selected channels, however you will not be within the rated accuracy of the module.
	Bit 07	Revert to defaults bit (RV) — Normally reset (0). When set (1) during a calibration procedure, default values for selected channels are used for the calibration coefficient. Note: You will not be within the rated accuracy of the module.
	Bits 0811	Not used. Set to 0.
	(1013)	For IF4ICFXT only:
		Bit 8 — FastStepResponse (FR) forces the A/D to skip the FIR stage if an input step occurs. An averaging algorithm is temporarily used instead of the FIR filter in the A/D to provide a quicker response.
		Bit 9 — FIRFilterDisable (SK) bypasses the FIR filter stage in the A/D.
		Bit 10 — ChopModeDisable (CH) disables the chop mode in the A/D. Chop mode is used to reduce offsets between input and output of the analog section of the A/D. ⁽¹⁾
		Note: Module level settings that only affect 150 Hz, 300 Hz, and 600 Hz conversion rate settings.
	Bit 13 (15)	Transparent bit (TR) – This bit, when set to 1, permits configuration to be changed without using the IC bit.

Table 5.5 Word/Bit Descriptions for 1794-IF4I Isolated Analog Input Module

Word	Decimal Bit (Octal Bit)	Definition
Word 4	Bit 12 (14)	Interrupt Toggle bit (IT) — This bit, when set (1), permits interleaving of module interrupts ensuring exchange of critical data when channels are configured for their fastest update times. RTSI and "no low pass filter" must be 0 in order for the module to recognize this feature. This groups data update rates for all channels to the slowest configuration setting of any of the channels. In addition, channel update rates for all channels with a 7.5 ms update rate are reduced to 5.0 ms. When reset (0), real time sampling and filter features are enabled.
	Bit 15 (17)	Initiate Configuration bit (IC) — When set (1), instructs the module to enter configuration mode. Present configuration data prior to or coincident with IC being set. Once IC returns to 0, the configuration is applied and any subsequent configuration information is ignored until IC is toggled.
Words 5	Bits 0015 (0017)	Not used.

⁽¹⁾ For changes in tag values like the CH bit in the 1794-IF4ICFXT to take effect, the tag either must be included in a ladder rung or a configuration download forced using the configuration tab in the RSLogix GUI.

4 Output Isolated Analog Module — 1794-0F4I Image Table Mapping

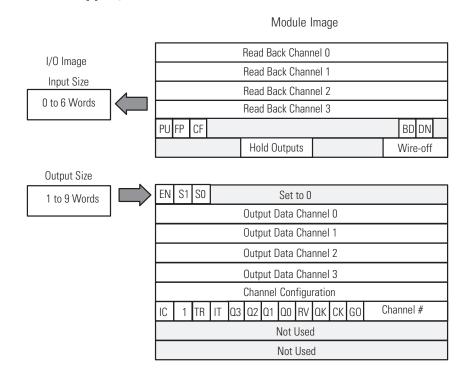


Table 5.6 Analog Output Module — 1794-OF4I Read

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Read Word 0	Read	Back Ch	annel 0	•	•	•							•	•		•
Word 1	Read	ead Back Channel 1														
Word 2	Read	Back Ch	annel 2													
Word 3	Read	Back Ch	annel 3													
Word 4	PU	PU FP CF 0 Reserved						0	0	0	0	0	BD	DN	0	
Word 5	0	0	0	0	P3	P2	P1	P0	0	0	0	0	W3	W2	W1	W0

Where:

PU = Power up unconfigured state

FP = Field power off

CF = In configuration mode

BD = Calibration bad

DN = Calibration accepted

P0...P3 = Output holding in response to Q0...Q3

W0...W3 = Wire off current loop status for channels 0...3 respectively. Not used on voltage outputs.

Table 5.7 Analog Output Module — 1794-OF4I Write Configuration Block

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Write Word 0	EN	S1	S0	0	0	0	0	0	0	0	0	0	0	0	0	0
Word 1	Outpu	ıt Data -	— Char	nnel 0	•			·		II.		•	- II			ı
Word 2	Outpu	ut Data — Channel 1														
Word 3	Outpu	ıt Data -	— Char	nel 2												
Word 4	Outpu	ıt Data -	— Char	nnel 3												
Word 5	Outpu	ıt Ch 3 C	onfigur	ation	Outpu	ut Ch 2 (Configu	ration	Outp	ut Ch 1	Configu	ation	Outpu	ut Ch O	Configu	ration
Word 6	IC	1	TR	IT	Q3	02	Q1	QO	RV	QK	CK	GO	Chani	nel Nur	nber	
Word 7	Not u	ot used														

EN = Enable outputs; 0 = output follows S1/S0, 1 = output enabled

IC = Initiate configuration bit

TR = Transparent bit

IT = Interrupt Toggle bit

Q0-3 = Request for outputs to hold

RV = Revert to defaults bit

QK = Quick calibration

CK = Calibration clock

GO = Gain offset select

Table 5.8 Configure Outputs for 1794-OF4I Isolated Output Module

Cor	nfigu s	ratio	n	Nominal Range	Data Type	Output Values		Update Rate
MS	D	LSI)	-		Hexadecimal	Decimal	
0	0	0	1	420 mA	signed 2's complement	<0000-7878>	<0000-30840>	5.0 ms
0	0	1	0	±10v	signed 2's complement	<8618–79E8>	<-31208–31208>	2.5 ms
0	0	1	1	±5V	signed 2's complement	<8618–79E8>	<-31208–31208>	2.5 ms
0	1	0	0	020 mA	signed 2's complement %	<0-2710>	<0-10000>	5.0 ms
0	1	0	1	420 mA	signed 2's complement %	<0-2710>	<0-10000>	5.0 ms
0	1	1	0	010V	signed 2's complement %	<0-2710>	<0-10000>	5.0 ms
0	1	1	1	±10V	signed 2's complement %	<d8f0-2710></d8f0-2710>	<-10000-10000>	5.0 ms
1	0	0	0	020 mA	binary	<0000-F3CF>	<0000-62415>	2.5 ms
1	0	0	1	420 mA	binary	<0000-F0F1>	<0000-61681>	5.0 ms
1	0	1	0	010V	binary	<0000-F3CF>	<0000-62415>	2.5 ms
1	0	1	1	05V	binary	<0000-F3CF>	<0000-62415>	2.5 ms
1	1	0	0	020 mA	offset binary	<8000-F9E8>	<32768–63976>	2.5 ms

Table 5.8 Configure Outputs for 1794-0F4I Isolated Output Module

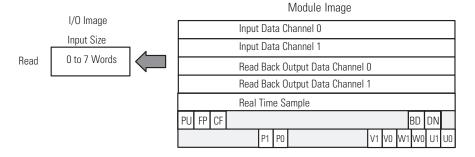
	Configuration Nomina Range		Nominal Range	Data Type	Output Values		Update Rate	
MS	D	LSE)			Hexadecimal Decimal		
1	1	0	1	420 mA	offset binary	<8000–F878>	<32768–63608>	5.0 ms
1	1	1	0	±10V	offset binary	<0618–F9E8>	<1560-63976>	2.5 ms
1	1	1	1	±5V	offset binary	<0618–F9E8>	<1560-63976>	2.5 ms

Table 5.9 Word/Bit Descriptions for 1794-OF4I Isolated Analog Output Module

Word	Decimal Bit (Octal Bit)	Definition
Read Word 0	Bits 0015 (0017)	Read Back Channel 0 — During normal operation, it is a copy of the output of channel 0. During an EN transition, it is the condition of the output as determined by S1 and S0. Read back is an image of what the user has sent as output to the module; no checks are performed on the data.
Word 1	Bits 0015 (0017)	Read Back Channel 1 — During normal operation, it is a copy of the output of channel 0. During an EN transition, it is the condition of the output as determined by S1 and S0. Read back is an image of what the user has sent as output to the module; no checks are performed on the data.
Word 2	Bits 0015 (0017)	Read Back Channel 2 — During normal operation, it is a copy of the output of channel 0. During an EN transition, it is the condition of the output as determined by S1 and S0. Read back is an image of what the user has sent as output to the module; no checks are performed on the data.
Word 3 Bits 0015 (0017) Read Back C of the output of condition of the is an image of		Read Back Channel 3 — During normal operation, it is a copy of the output of channel 0. During an EN transition, it is the condition of the output as determined by S1 and S0. Read back is an image of what the user has sent as output to the module; no checks are performed on the data.
Word 4	Bit 00	Reserved
	Bit 01	Calibration Done bit (DN) — This bit is set to 1 after a calibration cycle is completed.
	Bit 02	Calibration Bad bit (BD) – This bit is set to 1 if the channel calibration coefficients cannot be saved or be read properly.
	Bits 0307	Set to 0.
	Bits 0811 (1013)	Reserved.
	Bit 12 (14)	Set to 0.
	Bit 13 (15)	Configuration mode bit (CF) — This bit is set (1) when the calibration mode is selected (bit 15, word 5 in the block transfer write set to 1). When this bit is set (1), the module status indicator flashes.

Table 5.9 Word/Bit Descriptions for 1794-OF4I Isolated Analog Output Module

	Word	Decimal Bit (Octal Bit)	Definition
•	Word 4	Bit 14 (16)	Field Power Off bit (FP) – This bit is set (1) when the 24V field power fails. When this bit is set (1), the module status indicator flashes.
		Bit 15 (17)	Power Up (unconfigured state) bit (PU) – This bit is set (1) when the configuration word is all zeroes (0) due to a reset (adapter power cycle or module insertion) or a cleared configuration word (all 0). When this bit is set (1), the module status indicator flashes.
	Word 5	Bits 0003	Wire-Off status bits. (W) — These bits, when set (1), indicate the corresponding current output channel is open. W0 corresponds to channel 0, W1 corresponds to channel 2, and so on.
		Bits 0407	Set to 0.
		Bits 1011 (1213)	Hold output bits (P) — These bits are set (1) in response to QO or Q1 and a transition of the EN bit. When PO or P1 is set (1), they indicate that the output is holding at the level in the readback data for the respective channel. These bits return to 0 when the output data matches the readback output data.
		Bits 1215 (1417)	Set to 0.
	Write Word 0	Bits 0012 (0014)	Not used.
		Bit 1314 (1516)	Safe State Source bits (S1/S0) — When EN is 0, these bits designate the source of the safe state data. Bit 13 = 0, bit 14 = 1 — reset outputs to 0V/0mA (used with 1794-ASB/C) Bit 13 = 1, bit 14 = 1 — hold output at its current level (used with 1794-ASB/C Bit 13 = 0; bit 14 = 0 — Safe state data is in output data words.
		Bit 15 (17)	Output enable bit (EN) — When set (1), the outputs are enabled. This bit must be set in order for the real time data to appear at the outputs. If this bit is not set (0), the outputs will be determined by \$1/\$0.
1	Word 1	Bits 0015 (0017)	Channel O output data — The output data is real time data formatted to the selected configuration. (This data is also safe state data when directed by S! and S0.)
I	Word 2	Bits 0015 (0017)	Channel 1 output data – The output data is real time data formatted to the selected configuration. (This data is also safe state data when directed by S! and S0.)
•	Word 3	Bits 0015 (0017)	Channel 2 output data – The output data is real time data formatted to the selected configuration. (This data is also safe state data when directed by S! and S0.)
•	Word 4	Bits 0015 (0017)	Channel 4 output data – The output data is real time data formatted to the selected configuration. (This data is also safe state data when directed by S! and S0.)


Table 5.9 Word/Bit Descriptions for 1794-OF4I Isolated Analog Output Module

Word	Decimal Bit (Octal Bit)	Definition
Word 5	Channel Config	guration
	Bits 0003	Channel O Configuration
	Bits 0407	Channel 1 Configuration
	Bits 0811 (1013)	Channel 2 Configuration
	Bits 1215 (1417)	Channel 3 Configuration
Word 6	Bits 0003	Channel calibration selection bit. When this bit is set (1), the channel can be calibrated using the calibration clock bit (CK). Bit 00 corresponds to input channel 0, bit 01 corresponds to input channel 1, it 02 corresponds to input channel 2, bit 03 corresponds to input channel 3.
	Bit 04	Gain/Offset selection bit (G0) — When this bit is cleared, a 01 to 0 transition of the CK bit performs on offset calibration. When this bit is 1, the module is directed to do a gain calibration.
	Bit 05	Calibration clock bit (CK) — When this bit is set to 1 (calibration mode), the calibration coefficient for the selected channels is accepted. When this bit is reset (0), the accepted calibration coefficients for the selected channels are stored, applied, and the calibration mode exited. Monitor status bits DN and BD for successful calibration.
	Bit 06	Quick Calibration bit (QK) – Normally reset (0). When this bit is set (1) during a calibration sequence, the calibration coefficient is stored to all related configurations for the selected channels. Note: This method of calibration quickly calibrates the selected channels, however you will not be within the rated accuracy of the module.
	Bit 07	Revert to defaults bit (RV) — Normally reset (0). When set (1) during a calibration procedure, default values for selected channels are used for the calibration coefficient. Note: You will not be within the rated accuracy of the module.
	Bits 0811 (1013)	Request for hold outputs (Q) — Channel request bits that instruct an output to hold its output level when EN transitions from 1 to 0 to 1. When EN is 0, outputs go to a safe state dictated by S1/S0. When EN returns to 1, the outputs will hold their level until the output data equals the output level. P0P3 indicates channels holding. Output read back data shows what level is being held. Q0 = bit 08 (10) = channel 0; Q1 = bit 08 (10) = channel 1, and so on.

Table 5.9 Word/Bit Descriptions for 1794-OF4I Isolated Analog Output Module

Word	Decimal Bit (Octal Bit)	Definition
Word 6	Bit 12 (14)	Interrupt Toggle bit (IT) — This bit, when set (1), permits interleaving of module interrupts ensuring exchange of critical data when channels are configured for their fastest update times. RTSI and "no low pass filter" must be 0 in order for the module to recognize this feature. This groups data update rates for all channels to the slowest configuration setting of any of the channels. In addition, channel update rates for all channels with a 7.5 ms update rate are reduced to 5.0 ms. When reset (0), real time sampling and filter features are enabled.
	Bit 13 (15)	Transparent bit (TR) – This bit, when set to 1, permits configuration to be changed without using the IC bit.
	Bit 14 (16)	Set to 1.
	Bit 15 (17)	Initiate Configuration bit (IC) — When set (1), instructs the module to enter configuration mode. Present configuration data prior to or coincident with IC being set. Once IC returns to 0, the configuration is applied and any subsequent configuration information is ignored until IC is toggled.
Words 7	Bits 0015 (0017)	Not used.

Isolated Analog Combo Module — 1794-IF2XOF2I Series B Image **Table Mapping**

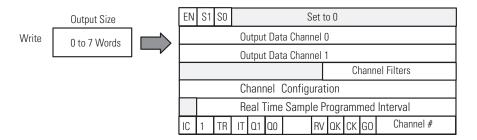


Table 5.10 Analog Combo Module — 1794-IF2XOF2I Read

Word/Dec. Bit	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Word/Octal Bit	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Read Word 0	Input	nput Data Channel 0														
Word 1	Input	Data Ch	annel 1													
Word 2	Read I	Read Back Channel 0														
Word 3	Read I	Back Ch	annel 1													
Word 4	0	Real T	ime Sa	mple												
Word 5	PU	FP	CF	0	Reser	ved			0	0	0	0	0	BD	DN	0
Word 6	0	0	0	0	P1	P0	0	0	0	0	V1	V0	W1	W0	U1	U0

Where:

PU = Power up unconfigured state

PO and P1 = Output holding in response to Q0...Q1

FP = Field power off

W0 and W1 = Wire off current loop status for input channels 0 and 1 respectively. Not used on

CF = In configuration mode

voltage outputs.

BD = Calibration bad DN = Calibration accepted U0 and U1 = Underrange for input channels o and 1 respectively. V0 and V1 = Overrange for input channels o and 1 respectively.

Table 5.11 Configure Your Input Channels

03	02	01	00	Set these bits	for Channel 0						
07	06	05	04	Set these bits	for Channel 1						
Bit S	Setting	gs		Input Values	Data Format	%	Input Range ⁽²⁾		Module Update Rate		
						Underrange % Overrange	Hexadecimal	Decimal	(RTSI = 0)	(RTSI = 0 IT = 1	
0	0	0	0	Channel not c	onfigured	-					
0	0	0	1	420 mA	signed 2's complement	4% Under; 4% Over	<0000-7878>	<0000-30840>	7.5 ms	5.0 ms	
0	0	1	0	±10V	signed 2's complement	2% Under; 2% Over	<831F–7CE1>	<-31969–64969>	2.5 ms	2.5 ms	
0	0	1	1	±5V	signed 2's complement	4% Under; 4% Over	<8618–79E8>	<-31208–31208>	2.5 ms	2.5 ms	
0	1	0	0	020 mA	signed 2's complement %	0% Under; 4% Over	<0-2710>	<0-10000>	7.5 ms	5.0 ms	
0	1	0	1	420 mA	signed 2's complement %	4% Under; 4% Over	<0–2710>	<0-10000>	7.5 ms	5.0 ms	
0	1	1	0	010V	signed 2's complement %	0% Under; 2% Over	<0–2710>	<0-10000>	5.0 ms	5.0 ms	
0	1	1	1	±10V	signed 2's complement %	2% Under; 2% Over	<d8f0-2710></d8f0-2710>	<-10000-10000>	5.0 ms	5.0 ms	
1	0	0	0	020 mA	binary	0% Under; 4% Over	<0000-F3CF>	<0000–62415>	2.5 ms	2.5 ms	
1	0	0	1	420 mA ⁽¹⁾	binary	4% Under; 4% Over	<0000-F0F1>	<0000-61681>	7.5 ms	5.0 ms	
1	0	1	0	010V	binary	0% Under; 2% Over	<0000-F9C2>	<0000–63938>	2.5 ms	2.5 ms	
1	0	1	1	05V	binary	0% Under; 4% Over	<0000-F3CF>	<0000-62415>	2.5 ms	2.5 ms	
1	1	0	0	020 mA	offset binary, 8000 H = 0 mA	4% Under; 4% Over	<0618–F9E8>	<1560-63976>	2.5 ms	2.5 ms	
1	1	0	1	420 mA	offset binary, 8000 H = 4 mA	4% Under; 4% Over	<8000–F878>	<32768-63608>	7.5 ms	5.0 ms	
1	1	1	0	±10V	offset binary, 8000 H = 0 mA	2% Under; 2% Over	<031F–FCE1>	<799-64737>	2.5 ms	2.5 ms	
1	1	1	1	±5V	offset binary, 8000 H = 0 mA	4% Under; 4% Over	<0618–F9E8>	<1560–63976>	2.5 ms	2.5 ms	

⁽¹⁾ Underrange for 4...20 mA occurs in the blind area below 0 (3.2 mA).

 $^{^{(2)}}$ < and > indicate the overrun beyond actual range (about 5%).

Table 5.12 Set Input Filter

Bits				Channel	_	
03	02	01	00	Input Channel 0		
07	06	05	04	Input Channel 1		
				A/D Conversion Rate	Low Pass Filter	
0	0	0	0	1200 Hz	No low pass	
0	0	0	1	1200 Hz	100 ms low pass	
0	0	1	0	1200 Hz	500 ms low pass	
0	0	1	1	1200 Hz	1000 ms low pass	
0	1	0	0	600 Hz	No low pass	
0	1	0	1	600 Hz	100 ms low pass	
0	1	1	0	600 Hz	500 ms low pass	
0	1	1	1	600 Hz	1000 ms low pass	
1	0	0	0	300 Hz	No low pass	
1	0	0	1	300 Hz	100 ms low pass	
1	0	1	0	300 Hz	500 ms low pass	
1	0	1	1	300 Hz	1000 ms low pass	
1	1	0	0	150 Hz	No low pass	
1	1	0	1	150 Hz	100 ms low pass	
1	1	1	0	150 Hz	500 ms low pass	
1	1	1	1	150 Hz	1000 ms low pass	

Table 5.13 Configure Your Outputs for the 1794-IF2XOF2I Analog Combo Module

Configuration Bits		Nominal Range	Data Type	Output Values ⁽	1)	Update Rate		
MS	D	LSE)			Hexadecimal	Decimal	
0	0	0	1	420 mA	signed 2's complement	<0000-7878>	<0000-30840>	5.0 ms
0	0	1	0	±10V	signed 2's complement	<8618–79E8>	<-31208–31208>	2.5 ms
0	0	1	1	±5V	signed 2's complement	<8618–79E8>	<-31208–31208>	2.5 ms
0	1	0	0	020 mA	signed 2's complement %	<0-2710>	<0-10000>	5.0 ms
0	1	0	1	420 mA	signed 2's complement %	<0-2710>	<0-10000>	5.0 ms
0	1	1	0	010V	signed 2's complement %	<0-2710>	<0-10000>	5.0 ms
0	1	1	1	±10V	signed 2's complement %	<d8f0-2710></d8f0-2710>	<-10000-10000>	5.0 ms
1	0	0	0	020 mA	binary	<0000-F3CF>	<0000-62415>	2.5 ms
1	0	0	1	420 mA	binary	<0000-F0F1>	<0000-61681>	5.0 ms
1	0	1	0	010V	binary	<0000-F3CF>	<0000-62415>	2.5 ms
1	0	1	1	05V	binary	<0000-F3CF>	<0000-62415>	2.5 ms

Table 5.13 Configure Your Outputs for the 1794-IF2XOF2I Analog Combo Module

		Nominal Range	Data Type	Output Values ⁽	Update Rate			
MS	D	LSD)			Hexadecimal	Decimal	
1	1	0	0	020 mA	offset binary	<8000-F9E8>	<32768–63976>	2.5 ms
1	1	0	1	420 mA	offset binary	<8000-F878>	<32768–63608>	5.0 ms
1	1	1	0	±10V	offset binary	<0618–F9E8>	<1560–63976>	2.5 ms
1	1	1	1	±5V	offset binary	<0618–F9E8>	<1560–63976>	2.5 ms

 $^{^{(1)}}$ < and > indicate the overrun beyond actual range (about 5%).

Table 5.14 Word/Bit Descriptions for the 1794-IF2XOF2I Isolated Analog Combo Module

Write Word	Decimal Bit (Octal Bit)	Definition
Word 0	Bits 0015 (0017)	Input Channel 0 input data — 16-bit unipolar; 15-bit plus sign bipolar
Word 1	Bits 0015 (0017)	Input Channel 1 input data — 16-bit unipolar; 15-bit plus sign bipolar
Word 2	Bits 0015 (0017)	Read Back Output Channel 0 – During normal operation, it is a copy of the output of channel 0. During an EN transition, it is the condition of the output as determined by S1 and S0.
Word 3	Bits 0015 (0017)	Read Back Output Channel 1 — During normal operation, it is a copy of the output of channel 1. During an EN transition, it is the condition of the output as determined by S1 and S0.
Word 4	Bits 0015 (0017)	Real Time Sample . The fixed time period you set telling the module when to provide data to the processor.

Table 5.14 Word/Bit Descriptions for the 1794-IF2XOF2I Isolated Analog Combo Module

Write Word	Decimal Bit (Octal Bit)	Definition
Word 5	Bits 00	Reserved.
	Bits 01	Calibration Done bit (DN) — This bit is set to 1 after a calibration cycle is completed.
	Bits 02	Calibration Bad bit (BD) – This bit is set to 1 if the channel calibration coefficients cannot be saved or read properly.
	Bits 0307	Set to 0.
	Bits 0811 (1012)	Reserved.
	Bit 12 (14)	Set to 0.
	Bit 13 (15)	Configuration mode bit (CF) – This bit is set (1) when the configuration mode is selected (bit 15, word 6 in the block transfer write set to 1). When this bit is set (1), the module status indicator flashes.
	Bit 14 (16)	Field Power Off bit (FP) – This bit is set (1) when the 24V field power fails. When this bit is set (1), the module status indicator flashes.
	Bit 15 (17)	Power Up (unconfigured state) bit (PU) — This bit is set (1) when the configuration word is all zeroes (0) due to a reset (adapter power cycle or module insertion) or a cleared configuration word (all 0). When this bit is set (1), the module status indicator flashes.
Word 6	Bits 0001	Underrange bits (U) — These bits, when set (1), indicate the corresponding current output channel is open. W0 (bit 02) corresponds to channel 0, and W1 (bit 03) corresponds to channel 1.
	Bits 0203	Wire-Off status bits. (W) — These bits, when set (1), indicate the corresponding current output channel is open. W0 corresponds to channel 0, W1 corresponds to channel 2, and so on.
	Bits 0405	Overrange bits (V) — These bits are set (1) when the input channel is above a preset limit as defined by the configuration selected. Bit 04 corresponds to input channel 0 and bit 05 corresponds to input channel 1.
	Bits 0609 (0611)	Not used. Set to 0.
	Bits 1011 (1213)	Hold output bits (P) — These bits are set (1) in response to Q0 or Q1 and a transition of the EN bit. When P0 or P1 is set (1), they indicate that the output is holding at the level in the readback data for the respective channel. These bits return to 0 when the output data matches the readback output data.
	Bits 1215 (1417)	Not used. Set to 0.

Table 5.14 Word/Bit Descriptions for the 1794-IF2XOF2I Isolated Analog Combo Module

Write Word	Decimal Bit (Octal Bit)	Definition		
Write Word 0	Bits 0012 (0014)	Not used.		
	Bits 1314 (1516)	Safe State Source bits (S1/S0) – When EN is 0, these bits designate the source of the safe state data.		
		Bit $13 = 0$, bit $14 = 1$ – reset outputs to $0V/0$ mA		
		Bit $13 = 1$, bit $14 = 1$ — hold output at its current level		
	Bits 15 (17)	Output enable bit (EN) — When set (1), the outputs are enabled. This bit must be set in order for the real time data to appear at the outputs. If this bit is not set (0), the outputs will be determined by S1/S0.		
Word 1	Bits 0015 (0017)	Output Channel 0 data.		
Word 2	Bits 0015 (0017)	Output Channel 1 data.		
Word 3	Input Channels 0 and 1 Filter Selections			
	Bits 0001	Channel O Filter Setting		
	Bits 0407	Channel 1 Filter Setting		
	Bits 0815 (1017)	Set to 0.		
Word 4	Channel Config	guration		
	Bit 0003	Input Channel O Configuration		
	Bits 0407	Input Channel 1 Configuration		
	Bits 0811 (1013)	Output Channel O Configuration		
	Bits 1215 (1417)	Output Channel 1 Configuration		
Word 5	Bits 0014 (0016)	Real Time Sample Interval — Programs the interval of the real time sample. Can be varied from 0 to 30 seconds (30000 decimal). Resolution is in ms with granularity in 5 ms steps.		
	Bit 15 (17)	Set to 0.		

Table 5.14 Word/Bit Descriptions for the 1794-IF2XOF2I Isolated Analog Combo Module

Write Word	Decimal Bit (Octal Bit)	Definition
Word 6	Bits 0003	Channel calibration selection bit. When this bit is set (1), the channel can be calibrated using the initiate calibration bit (IC). Bit 00 corresponds to input channel 0, bit 01 corresponds to input channel 1, bit 02 corresponds to output channel 0, bit 03 corresponds to output channel 1.
	Bit 04	Gain/Offset selection bit (GO) — When this bit is set (1), a reset (0), set (1), reset (0) pattern of the calibration clock bit (CK) causes a gain calibration to occur. When this bit is set to 0, a reset (0), set (1), reset (0) pattern of the calibration clock bit (CK) causes an offset calibration to occur.
	Bit 05	Calibration clock bit (CK) — When this bit is set to 1 (calibration mode), the calibration coefficient for the selected channels is accepted. When this bit is reset (0), the accepted calibration coefficients are stored in the selected channels, applied, and the calibration mode exited. Monitor status bits DN and BD for successful calibration.
	Bit 06	Quick Calibration bit (QK) — Normally reset (0). When this bit is set (1) during a calibration sequence, the calibration coefficient is stored to all related configurations for the selected channels. Note: This method of calibration quickly calibrates the selected channels, you will not be within the rated accuracy of the module.
	Bit 07	Revert to defaults bit (RV) — Normally reset (0). When set (1) during a calibration procedure, default values for selected channels are used for the calibration coefficient.
	Bits 0809 (1011)	Not used. Set to 0.
	Bits 1011 (1213)	Request for hold outputs (Q) — Channel request bits that instruct an output to hold its output level when EN transitions from 0 to 1 to 0. When EN is 0, outputs go to a safe state dictated by S1/S0. When EN returns to 1, the outputs will hold their level until the output data equals the output level. P0P3 indicates channels holding. Output read back data shows what level is being held. Q0 = bit 08 (10) = channel 0; Q1 = bit 08 (10) = channel 1, and so on.
	Bit 12 (14)	Interrupt Toggle bit (IT) — This bit, when set (1), permits interleaving of module interrupts ensuring exchange of critical data when channels are configured for their fastest update times. RTSI and "no low pass filter" must be 0 in order for the module to recognize this feature. This groups data update rates for all channels to the slowest configuration setting of any of the channels. In addition, channel update rates for all channels with a 7.5 ms update rate are reduced to 5.0 ms. When reset (0), real time sampling and filter features are enabled.
	Bit 13 (15)	Transparent bit (TR) — This bit, when set to 1, permits configuration to be changed without using the IC bit.

Table 5.14 Word/Bit Descriptions for the 1794-IF2XOF2I Isolated Analog Combo Module

Write Word	Decimal Bit (Octal Bit)	Definition
Word 6	Bit 14 (16)	Set to 1.
	Bit 15 (17)	Initiate Configuration bit (IC) — When set (1), instructs the module to enter configuration mode. Present configuration data prior to or coincident with IC being set. Once IC returns to 0, additional configuration information is ignored.
Word 7	Bits 0015 (0017)	Not used.

Defaults

Each I/O module has default values associated with it. At default, each module will generate inputs/status and expect outputs/configuration.

Module Defaults for:		Factory Defaults		Real Time Size	
Catalog Number	Description	Input Default	Output Defaults	Input Defaults	Output Defaults
1794-IF4I	4-pt Isolated Analog Input	7	8	4	0
1794-0F4I	4-pt Isolated Analog Output	6	9	4	5
1794-IF2X0F2I	2 in/2 out Isolated Analog Combo	7	8	4	2

Factory defaults are the values available by the adapter.

You can change the I/O data size for a module by reducing the number of words mapped into the adapter module, as shown in real time sizes."

Real time sizes are the settings that provide optimal real time data to the adapter module. These values appear when you:

- first power up the system, and
- no previous stored settings have been applied.

Analog modules have 15 words assigned to them. This is divided into input words/output words. You can reduce the I/O data size to fewer words to increase data transfer over the backplane. For example, a 4 input analog module has 7 words input/8 words output. You can reduce the input words to 4 by not using the real time sample, module status or channel status. Likewise, you can reduce the write words to 0, thus eliminating the conversion rate/filter settings, channel range/data format, real time sample interval and configuration/calibration and unused words.

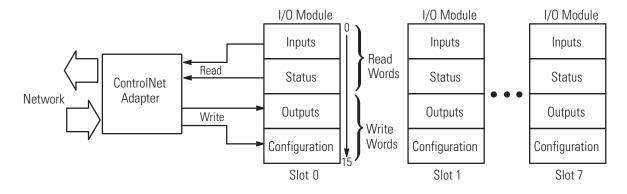
Chapter Summary

In this chapter, you read how to communicate with DeviceNet and ControlNet adapters using I/O data mapping.

Notes:

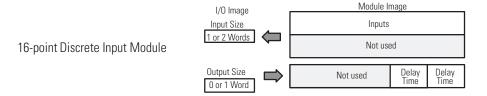
Input, Output, Status and Configuration Files for Analog Modules when used with ControlNet

What This Chapter Contains Read this chapter to troubleshoot your I/O module.


For Information On	See Page
About the ControlNet Adapter	99
Communication Over the FLEX I/O Backplane	99
Polled I/O Structure	100
Safe State Data	101
Communication Fault Behavior	102
Idle State Behavior	102
Input Data Behavior Upon Module Removal	102

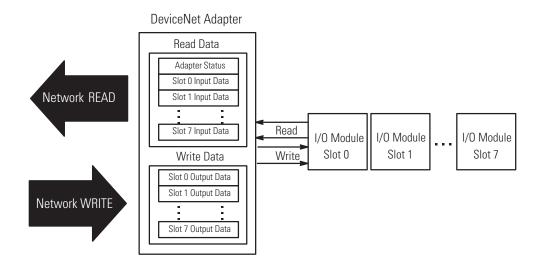
About the ControlNet Adapter

The FLEX I/O ControlNet adapter, catalog numbers 1794-ACN15 and 1794-ACNR15, is the interface between up to 8 FLEX I/O modules and a ControlNet processor or scanner. The adapter can support ControlNet real-time data connections to individual modules or module groups. Each connection is independent of the others and can be from different processors or scanners.


Communication Over the FLEX I/O Backplane

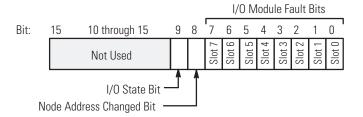
One 1794-ACN15 and 1794-ACNR15 ControlNet adapter can interface with up to eight terminal base units with installed FLEX I/O modules, forming a FLEX I/O system of up to eight slots. The adapter communicates to other network system components (typically one or more controllers or scanners, and/or programming terminals) over the DeviceNet network. The adapter communicates with its I/O modules over the backplane.

The I/O map for a module is divided into read words and write words. Read words consist of input and status words, and write words consist of output and configuration words. The number of read words or write words can be 0 or more. The length of each I/O module's read words and write words vary in size depending on module complexity. Each I/O module will support at least 1 input word or 1 output word. Status and configuration are optional, depending on the module.


For example, a 16 point discrete input module will have up to 2 read words and 1 write word.

Polled I/O Structure

Output data is received by the adapter in the order of the installed I/O modules. The Output data for Slot 0 is received first, followed by the Output data for Slot 1, and so on up to slot 7.


The first word of input data sent by the adapter is the Adapter Status Word. This is followed by the input data from each slot, in the order of the installed I/O modules. The Input data from Slot 0 is first after the status word, followed by Input data from Slot 2, and so on up to slot 7.

Adapter Input Status Word

The input status word consists of:

- I/O module fault bits 1 status bit for each slot
- node address changed 1 bit
- I/O status 1 bit

The adapter input status word bit descriptions are shown in the following table:

Bit Description	Bit	Explanation
I/O Module Faults	0	This bit is set (1) when an error is detected in slot position 0.
	1	This bit is set (1) when an error is detected in slot position 1.
	2	This bit is set (1) when an error is detected in slot position 2.
	3	This bit is set (1) when an error is detected in slot position 3.
	4	This bit is set (1) when an error is detected in slot position 4.
	5	This bit is set (1) when an error is detected in slot position 5.
	6	This bit is set (1) when an error is detected in slot position 6.
	7	This bit is set (1) when an error is detected in slot position 7.
Node Address Changed	8	This bit is set (1) when the node address switch setting has been changed sing power up.
I/O Status	9	Bit = 0 - idle Bit = 1 - run
	1015	Not used – sent as zeroes.

Possible causes for an **I/O Module Fault** are:

- Transmission errors on the FLEX I/O backplane
- a failed module
- a module removed from its terminal base
- incorrect module insertion in a slot position
- the slot is empty

Safe State Data

The ControlNet adapter provides the non-discrete module output data during communication faults or processor idle state. This "safe state data" assures that a known output will be applied to the output devices to maintain a previously designated safe operating condition during the previously mentioned failure modes. The processor or scanner software must include the means to specify this safe state data for each non-discrete module.

Communication Fault Behavior

You can configure the adapter response to a communication fault for each I/O module in its system. Upon detection of a communication fault, the adapter can:

- leave the module output data in its last state (hold last state)
- reset the module output data to zero (reset)
- apply safe state data to the module output

Idle State Behavior

The ControlNet adapter can detect the state of the controlling processor or scanner. Only 2 states can be detected: run mode, or program mode (idle).

When run mode is detected, the adapter copies the output data received from the processor to the corresponding module output. When program mode is detected, the adapter can be configured to:

- leave the module output data in its last state (hold last state)
- reset the module output data to zero (reset)
- apply safe state data to the module output

Input Data Behavior Upon Module Removal

I/O module input data sent by the adapter upon module removal is configurable. The adapter can:

- reset the module output data to zero (reset)
- leave the module output data in the last state before module removal (hold last state)

To find the image table for:	See Page
4 Input Isolated Analog Module — 1794-IF4I, 1794-IF4IXT, 1794-IF4ICFXT Table Mapping	103
4 Isolated Output Analog Module — 1794-0F4I Image Table Mapping	109
Isolated Analog Combo Module — 1794-IF2X0F2I Image Table Mapping	115

4 Input Isolated Analog Module — 1794-IF4I, 1794-IF4IXT, 1794-IF4ICFXT Table Mapping

Set EN bit Off (0) for Configuration block. Module actions (Reset, Safe State and Hold Last State) are set using programming software.

Table 6.1 Input Map

Dec.	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Oct.	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Word 0	Analo	Analog Value Channel 0														
Word 1	Analo	Analog Value Channel 1														
Word 2	Analo	Analog Value Channel 2														
Word 3	Analo	g Value	Channe	el 3												
Word 4	Real T	ime Sa	mple													
Word 5	PU	FP	CF	0	Reserv	ved			0	0	0	0	0	BD	DN	0
Word 6	0	0	0	0	0	0	0	0	V3	V2	V1	V0	U3	U2	U1	U0

Where:

PU = Power up inconfigured

FP = Field power off

CF = In configuration mode

BD = Bad calibration

DN = Calibration accepted

U = Underrange for specified channel

V = Overrange for specified channel

Table 6. 2 Output (Configuration) Map

Dec.	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Oct.	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Word 0	PU	FP	CF	0	Reser	Reserved			0	0	0	0	0	BD	DN	0
Word 1	Ch 3 F	ilter	ilter			Ch 2 Filter			Ch 1	Ch 1 Filter			Ch O Filter			
Word 2	Outpu	t Ch 3 Configuration			Output Ch 2 Configuration			Outp	Output Ch 1 Configuration			Output Ch O Configuration				
Word 3	0	Real	Real Time Sample Interval													

Table 6. 2 Output (Configuration) Map

Dec.	15	14	13	12	11	10	09	08	07	06	05	04	03	02	01	00
Oct.	17	16	15	14	13	12	11	10	07	06	05	04	03	02	01	00
Word 4	IC	1	TR	IT	0	СН	SK	FS	RV	QK	CK	GO	Channel Number			
Word 5	Reserv	Reserved														

EN = Enable bit (not used on input module)

IC = Initiate Configuration bit

TR = Transparent bit

IT = Interrupt toggle bit

CH - Chop Mode Disable.

SK = FIR Filter Disable

FS = Fast Step Response

RV = Revert to default bit

QK = Quick calibration

CK = Calibration clock

GO = Gain Offset select

Table 6.3 Word/Bit Descriptions for Isolated Analog Input Module

Word	Decimal Bit (Octal Bit)	Definition				
Input Word 0	Bits 0015 (0017)	Channel O analog data — Real time input data per your configuration				
Word 1	Bits 0015 (0017)	Channel 1 analog data — Real time input data per your configuration				
Word 2	Bits 0015 (0017)	Channel 2 analog data — Real time input data per your configuration				
Word 3	Bits 0015 (0017)	Channel 3 analog data — Real time input data per your configuration				
Word 4	Bits 0015 (0017)	Real Time Sample. The elapsed time in increments programmed by the real time sample interval.				
Word 5	Bit 00	Reserved				
	Bit 01	Calibration Done bit (DN) — This bit is set to 1 after a calibration cycle is completed.				
	Bit 02	Calibration Bad bit (BD) – This bit is set to 1 if the channel calibration coefficients cannot be saved or be read properly.				
	Bits 0307	Set to 0.				
	Bits 0811 (1013)	Reserved.				
	Bit 12 (14)	Set to 0.				
	Bit 13 (15)	Configuration mode bit (CF) — This bit is set (1) when the calibration mode is selected (bit 15, word 5 in the block transfer write set to 1). When this bit is set (1), the module status indicator flashes.				
	Bit 14 (16)	Field Power Off bit (FP) – This bit is set (1) when the 24V field power fails. When this bit is set (1), the module status indicator flashes.				

Table 6.3 Word/Bit Descriptions for Isolated Analog Input Module

Word	Decimal Bit (Octal Bit)	Definition					
Word 5	Bit 15 (17)	Power Up (unconfigured state) bit (PU) – This bit is set (1) when the configuration word is all zeroes (0) due to a reset (adapter power cycle or module insertion) or a cleared configuration word (all 0). When this bit is set (1), the module status indicator flashes.					
Word 6	Bits 0003	Underrange bits (U) — These bits are set (1) when the input channel is below a preset limit as defined by the configuration selected. U0 (bit 00) corresponds to input channel 0 and U1 (bit 01) corresponds to input channel 1, and so on.					
	Bits 0407	Overrange bits (V) — These bits are set (1) when the input channel is above a preset limit as defined by the configuration selected. Bit 04 corresponds to input channel 0 and bit 05 corresponds to input channel 1, and so on.					
	Bits 0815 (1017)	Not used. Set to 0.					
Configuration Word 0	Bits 0014 (0016)	Not used. Set to 0.					
	Bit 15 (17)	Output enable bit (EN) — Not used in the 1794-IF4I module.					
Word 1	Channels 0 through 3 Filter Selections						
	Bits 0003	Channel 0 Filter Setting					
	Bits 0407	Channel 1 Filter Setting					
	Bits 0811 (0013)	Channel 2 Filter Setting					
	Bits 1215 (1417)	Channel 3 Filter Setting					
Word 2	Channel Config	guration					
	Bits 0003	Channel O Configuration					
	Bits 0407	Channel 1 Configuration					
	Bits 0811 (1013)	Channel 2 Configuration					
	Bits 1215 (1417)	Channel 3 Configuration					
Word 3	Bits 0014 (0016)	Real Time Sample Interval – Programs the interval of the real time sample. Can be varied 030 seconds (30000 decimal). Resolution is in ms with granularity in 5 ms steps.					
	Bit 15 (17)	Not used. Set to 0.					

Table 6.3 Word/Bit Descriptions for Isolated Analog Input Module

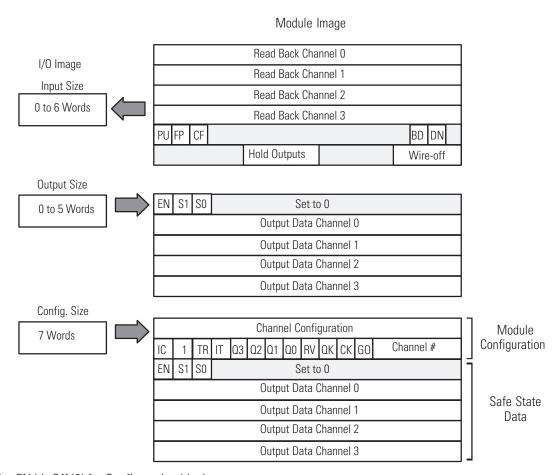
Word	Decimal Bit (Octal Bit)	Definition
Word 4	Bits 0003	Channel calibration selection bit. When this bit is set (1), the channel can be calibrated using the calibration clock bit (CK). Bit 00 corresponds to input channel 0, bit 01 corresponds to input channel 1, it 02 corresponds to input channel 2, bit 03 corresponds to input channel 3.
	Bit 04	Gain/Offset selection bit (GO) — When this bit is cleared, a 01 to 0 transition of the CK bit performs on offset calibration. When this bit is 1, the module is directed to do a gain calibration.
	Bit 05	Calibration clock bit (CK) — When this bit is set to 1 (calibration mode), the calibration coefficient for the selected channels is accepted. When this bit is reset (0), the accepted calibration coefficients for the selected channels are stored, applied, and the calibration mode exited. Monitor status bits DN and BD for successful calibration.
	Bit 06	Quick Calibration bit (QK) — Normally reset (0). When this bit is set (1) during a calibration sequence, the calibration coefficient is stored to all related configurations for the selected channels. Note: This method of calibration quickly calibrates the selected channels, however you will not be within the rated accuracy of the module.
	Bit 07	Revert to defaults bit (RV) — Normally reset (0). When set (1) during a calibration procedure, default values for selected channels are used for the calibration coefficient. Note: You will not be within the rated accuracy of the module.
	Bits 08	Not used. Set to 0.
		1794-IF4ICFXT —
		FastStepResponse (FR) — Use to enable a fast step response algorithm. The fast step response algorithm, upon sensing a step input, uses an averaging method rather than the FIR filter. The FIR goes back into operation once the input has settled. The default is fast step response disabled (0).
	Bit 09	1794-IF4I - Not used. Set to 0.
		1794-IF4ICFXT —
		FIR Filter Disable (SK) — Use to disable the FIR filter. The Finite Impulse Response filter is used by the module to improve signal stability. The default is FIR filter enabled (0).
	Bit 10	1794-IF4I - Not used. Set to 0.
		1794-IF4ICFXT —
		Chop Mode Disable (CH) — Use to disable the chop mode. Chop mode used by the module to reduce offset and drift errors. The default is chop mode enabled (0).
	Bit 11	Not used. Set to 0.

Table 6.3 Word/Bit Descriptions for Isolated Analog Input Module

Word	Decimal Bit (Octal Bit)	Definition
Word 4	Bit 12 (14)	Interrupt Toggle bit (IT) — This bit, when set (1), permits interleaving of module interrupts ensuring exchange of critical data when channels are configured for their fastest update times. RTSI and "no low pass filter" must be 0 in order for the module to recognize this feature. This groups data update rates for all channels to the slowest configuration setting of any of the channels. In addition, channel update rates for all channels with a 7.5 ms update rate are reduced to 5.0 ms. When reset (0), real time sampling and filter features are enabled.
	Bit 13 (15)	Transparent bit (TR) – This bit, when set to 1, permits configuration to be changed without using the IC bit.
	Bit 14 (16)	Set to 1.
	Bit 15 (17)	Initiate Configuration bit (IC) — When set (1), instructs the module to enter configuration mode. Present configuration data prior to or coincident with IC being set. Once IC returns to 0, the configuration is applied and any subsequent configuration information is ignored until IC is toggled.

Table 6.4 Set Input Filter

Bits				Channel	
03	02	01	00	Input 0	
07	06	05	04	Input 1	
11	10	09	08	Input 2	
15	014	13	12	Input 3	
				A/D Conversion Rate	Low Pass Filter
0	0	0	0	1200 Hz	No low pass
0	0	0	1	1200 Hz	100 ms low pass
0	0	1	0	1200 Hz	500 ms low pass
0	0	1	1	1200 Hz	1000 ms low pass
0	1	0	0	600 Hz	No low pass
0	1	0	1	600 Hz	100 ms low pass
0	1	1	0	600 Hz	500 ms low pass
0	1	1	1	600 Hz	1000 ms low pass
1	0	0	0	300 Hz	No low pass
1	0	0	1	300 Hz	100 ms low pass
1	0	1	0	300 Hz	500 ms low pass
1	0	1	1	300 Hz	1000 ms low pass
1	1	0	0	150 Hz	No low pass


Table 6.4 Set Input Filter

Bits				Channel	
1	1	0	1	150 Hz	100 ms low pass
1	1	1	0	150 Hz	500 ms low pass
1	1	1	1	150 Hz	1000 ms low pass

Table 6.5 Configure Your Input Module

			J	- Cui inputin										
Inp	ut Cha	annel	Conf	figuration										
03	02	01	00	Set these bit	s for Channel O									
07	06	05	04	Set these bit	et these bits for Channel 1									
11	10	09	08	Set these bit	et these bits for Channel 2									
15	14	13	12	Set these bit	s for Channel 3									
Bit	Bit Settings			Input Values	Data Format	% Underrange % Overrange	Input Range	Module Update Rate						
							Hexadecimal	Decimal	(RTSI = 0)					
0	0	0	0	Channel not	configured									
0	0	0	1	420 mA	signed 2's complement	4% Under; 4% Over	<0000-7878>	<0000-30840>	7.5 ms					
0	0	1	0	±10V	signed 2's complement	2% Under; 2% Over	<831F-7CE1>	<-31969–64969>	2.5 ms					
0	0	1	1	±5V	signed 2's complement	4% Under; 4% Over	<8618–79E8>	<-31208–31208>	2.5 ms					
0	1	0	0	020 mA	signed 2's complement %	0% Under; 4% Over	<0-2710>	<0-10000>	7.5 ms					
0	1	0	1	420 mA	signed 2's complement %	4% Under; 4% Over	<0-2710>	<0-10000>	7.5 ms					
0	1	1	0	010V	signed 2's complement %	0% Under; 2% Over	<0-2710>	<0-10000>	5.0 ms					
0	1	1	1	±10V	signed 2's complement %	2% Under; 2% Over	<d8f0-2710></d8f0-2710>	<-10000-10000>	5.0 ms					
1	0	0	0	020 mA	binary	0% Under; 4% Over	<0000-F3CF>	<0000-62415>	2.5 ms					
1	0	0	1	420 mA	binary	4% Under; 4% Over	<0000–F0F1>	<0000-61684>	7.5 ms					
1	0	1	0	010V	binary	0% Under; 2% Over	<0000-F9C2>	<0000-63938>	2.5 ms					
1	0	1	1	05V	binary	0% Under; 4% Over	<0000-F3CF>	<0000-62415>	2.5 ms					
1	1	0	0	020 mA	offset binary, 8000 H = 0 mA	4% Under; 4% Over	<0618–F9E8>	<1560–63976>	2.5 ms					
1	1	0	1	420 mA	offset binary, 8000 H = 4 mA	4% Under; 4% Over	<8000–F878>	<32768–63608>	7.5 ms					
1	1	1	0	±10V	offset binary, 8000 H = 0 mA	2% Under; 2% Over	<031F–FCE1>	<799–64737>	2.5 ms					
1	1	1	1	±5V	offset binary, 8000 H = 0 mA	4% Under; 4% Over	<0618–F9E8>	<1560-63976>	2.5 ms					

4 Isolated Output Analog Module — 1794-OF4I Image Table Mapping

Set EN bit Off (0) for Configuration block

Set EN bit On (1) for Output block

SO and S1 bits are not used in ControlNet applications. Set to Off (0).

Module actions (Reset, Safe State and Hold Last State) are set using programming software.

Table 6.6 Word/Bit Descriptions for the 1794-0F4I Analog Output Module

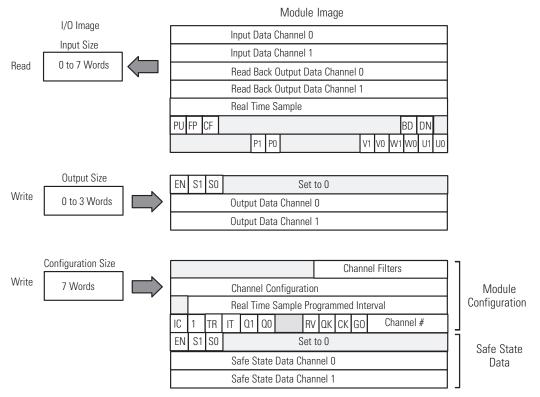
Word	Decimal Bit (Octal Bit)	Definition
Input Word 0	Bits 0015 (0017)	Read Back Channel 0 – During normal operation, it is a copy of the output of channel 0. During an EN transition, it is the condition of the output as determined by S1 and S0. Read back is an image of what the user has sent as output to the module; no checks are performed on the data.
Word 1	Bits 0015 (0017)	Read Back Channel 1 — During normal operation, it is a copy of the output of channel 1. During an EN transition, it is the condition of the output as determined by S1 and S0. Read back is an image of what the user has sent as output to the module; no checks are performed on the data.
Word 2	Bits 0015 (0017)	Read Back Channel 2 — During normal operation, it is a copy of the output of channel 2. During an EN transition, it is the condition of the output as determined by S1 and S0. Read back is an image of what the user has sent as output to the module; no checks are performed on the data.
Word 3	Bits 0015 (0017)	Read Back Channel 3 — During normal operation, it is a copy of the output of channel 3. During an EN transition, it is the condition of the output as determined by S1 and S0. Read back is an image of what the user has sent as output to the module; no checks are performed on the data.
Word 4	Bits 00	Reserved.
	Bits 01	Calibration Done bit (DN) — This bit is set to 1 after a calibration cycle is completed.
	Bits 02	Calibration Bad bit (BD) – This bit is set to 1 if the channel calibration coefficients cannot be saved or read properly.
	Bits 0307	Set to 0.
	Bits 0811 (1012)	Reserved.
	Bit 12 (14)	Set to 0.
	Bit 13 (15)	Configuration mode bit (CF) – This bit is set (1) when the configuration mode is selected (bit 15, word 5 in the block transfer write set to 1). When this bit is set, the module status indicator flashes.
	Bit 14 (16)	Field Power Off bit (FP) – This bit is set (1) when the 24V field power fails. When this bit is set (1), the module status indicator flashes.
	Bit 15 (17)	Power Up (unconfigured state) bit (PU) — This bit is set (1) when the configuration word is all zeroes (0) due to a reset (adapter power cycle or module insertion) or a cleared configuration word (all 0). When this bit is set, the module status indicator flashes.

Table 6.6 Word/Bit Descriptions for the 1794-0F4I Analog Output Module

Word	Decimal Bit (Octal Bit)	Definition
Word 5	Bits 0003	Wire-Off status bits. (W) — These bits, when set (1), indicate the corresponding current output channel is open. W0 corresponds to channel 0, W1 corresponds to channel 2, and so on.
	Bits 0407	Set to 0.
	Bits 1011 (1213)	Hold output bits (P) — These bits are set (1) in response to QO or Q1 and a transition of the EN bit. When PO or P1 is set (1), they indicate that the output is holding at the level in the readback data for the respective channel. These bits return to O when the output data matches the readback output data.
	Bits 1215 (1417)	Set to 0.
Output Word 0	Bits 0012 (0014)	Not used.
	Bits 1314 (1516)	Safe State Source bits (S1/S0) — Not used in ControlNet applications. Turn these bits off (i.e. set to 0)
	Bits 15 (17)	Output enable bit (EN) —
		Set this bit off (0) for the configuration block.
		Set this bit on (1) for the output block.
Word 1	Bits 0015 (0017)	Channel 0 output data – The output data is real time data formatted to the selected configuration. This data is also safe state data when directed by S1 and S0.
Word 2	Bits 0015 (0017)	Channel 1 output data – The output data is real time data formatted to the selected configuration. This data is also safe state data when directed by S1 and S0.
Word 3	Bits 0015 (0017)	Channel 2 output data – The output data is real time data formatted to the selected configuration. This data is also safe state data when directed by S1 and S0.
Word 4	Bits 0015 (0017)	Channel 3 output data – The output data is real time data formatted to the selected configuration. This data is also safe state data when directed by S1 and S0.
Configuration Word 0	Channel Config	,
	Bits 0003	Channel 0 Configuration
	Bits 0407	Channel 1 Configuration
	Bits 0811 (1013)	Channel 2 Configuration
	Bits 1215 (1417)	Channel 3 Configuration

Table 6.6 Word/Bit Descriptions for the 1794-0F4I Analog Output Module

Word	Decimal Bit (Octal Bit)	Definition
Word 1	Bits 0003	Channel calibration selection bit. When this bit is set (1), the channel can be calibrated using the calibration clock bit (CK). Bit 00 corresponds to output channel 0, bit 01 corresponds to output channel 1, it 02 corresponds to output channel 3, bit 03 corresponds to output channel 4.
	Bit 04	Gain/Offset selection bit (GO) — When this bit is cleared, a 01 to 0 transition of the CK bit performs on offset calibration. When this bit is 1, the module is directed to do a gain calibration.
	Bit 05	Calibration clock bit (CK) — When this bit is set to 1 (calibration mode), the calibration coefficient for the selected channels is accepted. When this bit is reset (0), the accepted calibration coefficients for the selected channels are stored, applied, and the calibration mode exited. Monitor status bits DN and BD for successful calibration.
	Bit 06	Quick Calibration bit (QK) — Normally reset (0). When this bit is set (1) during a calibration sequence, the calibration coefficient is stored to all related configurations for the selected channels. Note: Although this method of calibration quickly calibrates the selected channels, they will not be within the rated accuracy of the module.
	Bit 07	Revert to defaults bit (RV) — Normally reset (0). When set (1) during a calibration procedure, default values for selected channels are used for the calibration coefficient. Note: They will not be within the rated accuracy of the module.
	Bits 0811 (1013)	Request for hold outputs (Q) — Channel request bits that instruct an output to hold its output level when EN transitions from 1 to 0 to 1. When EN is 0, outputs go to a safe state dictated by S1/S0. When EN returns to 1, the outputs will hold their level until the output data equals the output level. P0—P3 indicates channels holding. Output read back data shows what level is being held. Q0 = bit 08 (10) = channel 0; Q1 = bit 09 (11) = channel 1, and so on.
	Bit 12 (14)	Interrupt Toggle bit (IT) — This bit, when set (1), permits interleaving of module interrupts ensuring exchange of critical data when channels are configured for their fastest update times. RTSI and "no low pass filter" must be 0 in order for the module to recognize this feature. This groups data update rates for all channels to the slowest configuration setting of any of the channels. In addition, channel update rates for all channels with a 7.5 ms update rate are reduced to 5.0 ms. When reset (0), real time sampling and filter features are enabled.


Table 6.6 Word/Bit Descriptions for the 1794-0F4I Analog Output Module

Word	Decimal Bit (Octal Bit)	Definition
Word 1	Bit 13 (15)	Transparent bit (TR) – This bit, when set to 1, permits configuration to be changed without using the IC bit.
	Bit 14 (16)	Set to 1.
	Bit 15 (17)	Initiate Configuration bit (IC) — When set (1), instructs the module to enter configuration mode. Present configuration data prior to or coincident with IC being set. Once IC returns to 0, the configuration is applied and any subsequent configuration information is ignored until IC is toggled.
Word 2	Bits 0012 (0014)	Not used.
	Bits 1314 (1516)	Safe State Source bits (S1/S0) – When EN is 0, these bits designate the source of the safe state data.
		Bit $13 = 0$, bit $14 = 1$ – reset outputs to $0V/0mA$ (used with $1794-ASB/C$)
		Bit $13 = 1$, bit $14 = 1$ — hold output at its current level (used with 1794-ASB/C)
		Bit $13 = 0$; bit $14 = 0$ — Safe state data is in output data words
	Bits 15 (17)	Output enable bit (EN) — When set (1), the outputs are enabled. This bit must be set in order for the real time data to appear at the outputs. If this bit is not set (0), the outputs will be determined by \$1/\$0.
Word 3	Bits 0015 (0017)	Channel 0 output data – The output data is real time data formatted to the selected configuration. This data is also safe state data when directed by S1 and S0.
Word 4	Bits 0015 (0017)	Channel 1 output data — The output data is real time data formatted to the selected configuration. This data is also safe state data when directed by S1 and S0.
Word 5	Bits 0015 (0017)	Channel 2 output data – The output data is real time data formatted to the selected configuration. This data is also safe state data when directed by S1 and S0.
Word 6	Bits 0015 (0017)	Channel 3 output data – The output data is real time data formatted to the selected configuration. This data is also safe state data when directed by S1 and S0.

Table 6.7 Configure Your Outputs – 1794-0F4I Isolated Output Module

Cor Bits	nfigu S	ratio	1	Nominal Range	Data Type	Output Values		Update Rate
MS	D	LSE)			Hexadecimal	Decimal	
0	0	0	1	420 mA	signed 2's complement	<0000-7878>	<0000-30840>	5.0 ms
0	0	1	0	±10V	signed 2's complement	<8618–79E8>	<-31208–31208>	2.5 ms
0	0	1	1	±5V	signed 2's complement	<8618–79E8>	<-31208–31208>	2.5 ms
0	1	0	0	020 mA	signed 2's complement %	<0-2710>	<0-10000>	5.0 ms
0	1	0	1	420 mA	signed 2's complement %	<0-2710>	<0-10000>	5.0 ms
0	1	1	0	010V	signed 2's complement %	<0-2710>	<0-10000>	5.0 ms
0	1	1	1	±10V	signed 2's complement %	<d8f0-2710></d8f0-2710>	<-10000–10000>	5.0 ms
1	0	0	0	020 mA	binary	<0000-F3CF>	<0000-62415>	2.5 ms
1	0	0	1	420 mA	binary	<0000-F0F1>	<0000-61681>	5.0 ms
1	0	1	0	010V	binary	<0000-F3CF>	<0000-62415>	2.5 ms
1	0	1	1	05V	binary	<0000-F3CF>	<0000-62415>	2.5 ms
1	1	0	0	020 mA	offset binary	<8000–F9E8>	<32768–63976>	2.5 ms
1	1	0	1	420 mA	offset binary	<8000–F878>	<32768-63608>	5.0 ms
1	1	1	0	±10V	offset binary	<0618–F9E8>	<1560–63976>	2.5 ms
1	1	1	1	±5V	offset binary	<0618–F9E8>	<1560–63976>	2.5 ms

Isolated Analog Combo Module — 1794-IF2XOF2I Image Table Mapping

Set EN bit Off (0) for Configuration block

Set EN bit On (1) for Output block

SO and S1 bits are not used in ControlNet applications. Set to Off (0).

Module actions (Reset, Safe State and Hold Last State) are set using programming software.

Table 6.8 Word/Bit Descriptions for the 1794-IF2XOF2I Isolated Analog Combo Module

Write Word	Decimal Bit (Octal Bit)	Definition
Input Word 0	Bits 0015 (0017)	Input Channel 0 input data — Real time input data per your configuration
Word 1	Bits 0015 (0017)	Input Channel 1 input data — Real time input data per your configuration
Word 2	Bits 0015 (0017)	Read Back Output Channel 0 – During normal operation, it is a copy of the output of channel 0. During an EN transition, it is the condition of the output as determined by S1 and S0. Note: Read back data is an image of what the user has sent as output to the module; no checks are performed on the data.
Word 3	Bits 0015 (0017)	Read Back Output Channel 1 – During normal operation, it is a copy of the output of channel 1. During an EN transition, it is the condition of the output as determined by S1 and S0. Note: Read back data is an image of what the user has sent as output to the module; no checks are performed on the data.

Table 6.8 Word/Bit Descriptions for the 1794-IF2XOF2I Isolated Analog Combo Module

Write Word	Decimal Bit (Octal Bit)	Definition
Word 4	Bits 0015 (0017)	Real Time Sample . The elapsed time in increments programmed by the real time sample interval.
Word 5	Bits 00	Reserved.
	Bits 01	Calibration Done bit (DN) — This bit is set to 1 after a calibration cycle is completed.
	Bits 02	Calibration Bad bit (BD) – This bit is set to 1 if the channel calibration coefficients cannot be saved or read properly.
	Bits 0307	Set to 0.
	Bits 0811 (1012)	Reserved.
	Bit 12 (14)	Set to 0.
	Bit 13 (15)	Configuration mode bit (CF) – This bit is set (1) when the configuration mode is selected (bit 15, word 6 in the block transfer write set to 1). When this bit is set (1), the module status indicator flashes.
	Bit 14 (16)	Field Power Off bit (FP) — This bit is set (1) when the 24V field power fails. When this bit is set (1), the module status indicator flashes.
	Bit 15 (17)	Power Up (unconfigured state) bit (PU) — This bit is set (1) when the configuration word is all zeroes (0) due to a reset (adapter power cycle or module insertion) or a cleared configuration word (all 0). When this bit is set (1), the module status indicator flashes.
Word 6	Bits 0001	Underrange bits (U) – These bits are set (1) when the input channel is below a preset limit as defined by the configuration selected. U0 (bit 00) corresponds to input channel 0 and U1 (bit 01) corresponds to input channel 1, and so on.
	Bits 0203	Wire-Off status bits. (W) — These bits, when set (1), indicate the corresponding current output channel is open. W0 corresponds to channel 0, W1 corresponds to channel 2, and so on.
	Bits 0405	Overrange bits (V) — These bits are set (1) when the input channel is above a preset limit as defined by the configuration selected. Bit 04 corresponds to input channel 0 and bit 05 corresponds to input channel 1.
	Bits 0609 (0611)	Not used. Set to 0.
	Bits 1011 (1213)	Hold output bits (P) — These bits are set (1) in response to Q0 or Q1 and a transition of the EN bit. When P0 or P1 is set (1), they indicate that the output is holding at the level in the readback data for the respective channel. These bits return to 0 when the output data matches the readback output data.
	Bits 1215 (1417)	Not used. Set to 0.

Table 6.8 Word/Bit Descriptions for the 1794-IF2XOF2I Isolated Analog Combo Module

Write Word	Decimal Bit (Octal Bit)	Definition
Output Word 0	Bits 0012 (0014)	Not used.
	Bits 1314 (1516)	Safe State Source bits (S1/S0) – When EN is 0, these bits designate the source of the safe state data.
		Bit $13 = 0$, bit $14 = 1$ – reset outputs to $0V/0mA$ (used with $1794-ASB/C$)
		Bit $13 = 1$, bit $14 = 1$ — hold output at its current level (used with 1794-ASB/C)
		Bit $13 = 0$; bit $14 = 0$ — Safe state data is in output data words
	Bits 15 (17)	Output enable bit (EN) — When set (1), the outputs are enabled. This bit must be set in order for the real time data to appear at the outputs. If this bit is not set (0), the outputs will be determined by \$1/\$0.
	Bits 0015 (0017)	Output Channel O data — The output data is real time data formatted to the selected configuration. This data is also safe state data when directed by S1 and S0.
Word 1	Bits 0015 (0017)	Output Channel 1 data — The output data is real time data formatted to the selected configuration. This data is also safe state data when directed by S1 and S0.
	·	
Configuration	Input Channels	s 0 and 1 Filter Selections
Word 0	Bits 0001	Channel 0 Filter Setting
	Bits 0407	Channel 1 Filter Setting
	Bits 0815 (1017)	Not used
Word 1	Channel Config	guration
	Bits 0003	Input Channel O Configuration
	Bits 0407	Input Channel 1 Configuration
	Bits 0811 (1013)	Output Channel O Configuration
	Bits 1215 (1417)	Output Channel 1 Configuration
Word 2	Bits 0014 (0016)	Real Time Sample Interval – Programs the interval of the real time sample. Can be varied 030 seconds (30000 decimal). Resolution is in ms with granularity in 5 ms steps.

Table 6.8 Word/Bit Descriptions for the 1794-IF2XOF2I Isolated Analog Combo Module

Write Word	Decimal Bit (Octal Bit)	Definition
Word 3	Bits 0003	Channel calibration selection bit. When this bit is set (1), the channel can be calibrated using the calibration clock bit (CK). Bit 00 corresponds to output channel 0, bit 01 corresponds to output channel 1, bit 02 corresponds to output channel 3, bit 03 corresponds to output channel 4.
	Bit 04	Gain/Offset selection bit (GO) — When this bit is cleared, a 01 to 0 transition of the CK bit performs on offset calibration. When this bit is 1, the module is directed to do a gain calibration.
	Bit 05	Calibration clock bit (CK) — When this bit is set to 1 (calibration mode), the calibration coefficient for the selected channels is accepted. When this bit is reset (0), the accepted calibration coefficients for the selected channels are stored, applied, and the calibration mode exited. Monitor status bits DN and BD for successful calibration.
	Bit 06	Quick Calibration bit (QK) — Normally reset (0). When this bit is set (1) during a calibration sequence, the calibration coefficient is stored to all related configurations for the selected channels. Note: Although this method of calibration quickly calibrates the selected channels, they will not be within the rated accuracy of the module.
	Bit 07	Revert to defaults bit (RV) — Normally reset (0). When set (1) during a calibration procedure, default values for selected channels are used for the calibration coefficient. Note: They will not be within the rated accuracy of the module.
	Bits 0809 (1011)	Not used. Set to 0.
	Bit 1011 (1213)	Request for hold outputs (Q) — Channel request bits that instruct an output to hold its output level when EN transitions from 10 to 1. When EN is 0, outputs go to a safe state dictated by S1/S0. When EN returns to 1, the outputs will hold their level until the output data equals the output level. P0—P3 indicates channels holding. Output read back data shows what level is being held. Q0 = bit 08 (10) = channel 0; Q1 = bit 08 (10) = channel 1, and so on.

Table 6.8 Word/Bit Descriptions for the 1794-IF2XOF2I Isolated Analog Combo Module

Write Word	Decimal Bit (Octal Bit)	Definition
Word 3	Bit 12 (14)	Interrupt Toggle bit (IT) — This bit, when set (1), permits interleaving of module interrupts ensuring exchange of critical data when channels are configured for their fastest update times. RTSI and "no low pass filter" must be 0 in order for the module to recognize this feature. This groups data update rates for all channels to the slowest configuration setting of any of the channels. In addition, channel update rates for all channels with a 7.5 ms update rate are reduced to 5.0 ms. When reset (0), real time sampling and filter features are enabled.
	Bit 13 (15)	Transparent bit (TR) — This bit, when set to 1, permits configuration to be changed without using the IC bit.
	Bit 15 (17)	Initiate Configuration bit (IC) — When set (1), instructs the module to enter configuration mode. Present configuration data prior to or coincident with IC being set. Once IC returns to 0, the configuration is applied and any subsequent configuration information is ignored until IC is toggled.
Word 4	Bits 0012 (0014)	Not used.
	Bits 1314 (1516)	Safe State Source bits (S1/S0) –Not used in ControlNet applications. Set these bits off (0).
	Bit 15 (17)	Output enable bit (EN)
		Set this bit off (0) for the configuration block.
		Set this bit on (1) for the output block.
Word 5	Bits 0015 (0017)	Output Channel O data
Word 6	Bits 0015 (0017)	Output Channel 1 data

Table 6.9 Configure Your Input Channels

Inp	ut C	hann	el C	onfiguration					
03	02	01	00	Set these bits	s for Channel O				
07	06	05	04	Set these bits	s for Channel 1				
Bit	Bit Settings Input Values Data Format % Underrange % Overrange					Module Update Rate			
							Hexadecimal	Decimal	(RTSI = 0)
0	0	0	0	Channel not o	configured				
0	0	0	1	420 mA	signed 2's complement	4% Under; 4% Over	<0000-7878>	<0000-30840>	7.5 ms
0	0	1	0	±10V	signed 2's complement	2% Under; 2% Over	<831F-7CE1>	<-31969–64969>	2.5 ms
0	0	1	1	±5V	signed 2's complement	4% Under; 4% Over	<8618–79E8>	<-31208–31208>	2.5 ms
0	1	0	0	020 mA	signed 2's complement %	0% Under; 4% Over	<0-2710>	<0-10000>	7.5 ms

Table 6.9 Configure Your Input Channels

Inp	Input Channel Configuration								
0	1	0	1	420 mA	signed 2's complement %	4% Under; 4% Over	<0-2710>	<0-10000>	7.5 ms
0	1	1	0	010V	signed 2's complement %	0% Under; 2% Over	<0-2710>	<0-10000>	5.0 ms
0	1	1	1	±10V	signed 2's complement %	2% Under; 2% Over	<d8f0-2710></d8f0-2710>	<-10000-10000>	5.0 ms
1	0	0	0	020 mA	binary	0% Under; 4% Over	<0000-F3CF>	<0000-62415>	2.5 ms
1	0	0	1	420 mA ⁽¹⁾	binary	4% Under; 4% Over	<0000-F0F1>	<0000-61681>	7.5 ms
1	0	1	0	010V	binary	0% Under; 2% Over	<0000-F9C2>	<0000-63938>	2.5 ms
1	0	1	1	05V	binary	0% Under; 4% Over	<0000-F3CF>	<0000-62415>	2.5 ms
1	1	0	0	020 mA	offset binary, 8000 H = 0 mA	4% Under; 4% Over	<0618–F9E8>	<1560-63976>	2.5 ms
1	1	0	1	420 mA	offset binary, 8000 H = 4 mA	4% Under; 4% Over	<8000–F878>	<32768–63608>	7.5 ms
1	1	1	0	±10V	offset binary, 8000 H = 0 mA	2% Under; 2% Over	<031F–FCE1>	<799–64737>	2.5 ms
1	1	1	1	±5V	offset binary, 8000 H = 0 mA	4% Under; 4% Over	<0618–F9E8>	<1560-63976>	2.5 ms

 $^{^{(1)}}$ Underrange for 4...20 mA occurs in the blind area below 0 (3.2 mA).

Table 6.10 Set Input Filter

Bits				Channel		
03	02	01	00	Input Channel 0		
07	06	05	04	Input Channel 1		
				A/D Conversion Rate	Low Pass Filter	
0	0	0	0	1200 Hz	No low pass	
0	0	0	1	1200 Hz	100 ms low pass	
0	0	1	0	1200 Hz	500 ms low pass	
0	0	1	1	1200 Hz	1000 ms low pass	
0	1	0	0	600 Hz	No low pass	
0	1	0	1	600 Hz	100 ms low pass	
0	1	1	0	600 Hz	500 ms low pass	
0	1	1	1	600 Hz	1000 ms low pass	
1	0	0	0	300 Hz	No low pass	
1	0	0	1	300 Hz	100 ms low pass	
1	0	1	0	300 Hz	500 ms low pass	
1	0	1	1	300 Hz	1000 ms low pass	
1	1	0	0	150 Hz	No low pass	
1	1	0	1	150 Hz	100 ms low pass	
1	1	1	0	150 Hz	500 ms low pass	
1	1	1	1	150 Hz	1000 ms low pass	

Table 6.11 Configure Your Outputs for the 1794-IF2XOF2I Analog Combo Module

Configuration Bits		Nominal Range	Data Type	Output Values	1)	Update Rate		
MS	D	LSD	D .			Hexadecimal	Decimal	
0	0	0	1	420 mA	signed 2's complement	<0000-7878>	<0000-30840>	5.0 ms
0	0	1	0	±10V	signed 2's complement	<8618–79E8>	<-31208–31208>	2.5 ms
0	0	1	1	±5V	signed 2's complement	<8618–79E8>	<-31208–31208>	2.5 ms
0	1	0	0	020 mA	signed 2's complement %	<0-2710>	<0-10000>	5.0 ms
0	1	0	1	420 mA	signed 2's complement %	<0-2710>	<0-10000>	5.0 ms
0	1	1	0	010V	signed 2's complement %	<0-2710>	<0-10000>	5.0 ms
0	1	1	1	±10V	signed 2's complement %	<d8f0-2710></d8f0-2710>	<-10000–10000>	5.0 ms
1	0	0	0	020 mA	binary	<0000-F3CF>	<0000-62415>	2.5 ms
1	0	0	1	420 mA	binary	<0000-F0F1>	<0000–61681>	5.0 ms
1	0	1	0	010V	binary	<0000-F3CF>	<0000–62415>	2.5 ms
1	0	1	1	05V	binary	<0000-F3CF>	<0000-62415>	2.5 ms
1	1	0	0	020 mA	offset binary	<8000-F9E8>	<32768–63976>	2.5 ms
1	1	0	1	420 mA	offset binary	<8000-F878>	<32768-63608>	5.0 ms
1	1	1	0	±10V	offset binary	<0618–F9E8>	<1560–63976>	2.5 ms
1	1	1	1	±5V	offset binary	<0618–F9E8>	<1560–63976>	2.5 ms

 $[\]overline{\text{(1)}}$ < and > indicate the overrun beyond actual range (about 5%).

Notes:

Calibrate Your Module

What This Chapter Contains Use this chapter to calibrate the FLEX I/O analog modules.

For Information On	See Page
When and How to Calibrate Your Isolated Analog Module	123
Tools and Equipment	124
Calibrate Your Isolated Analog Input Module	124
Calibrate Your Isolated Analog Output Module	127
Chapter Summary	134

When and How to Calibrate Your Isolated **Analog Module**

Your module is shipped to you already calibrated for 150 Hz, 300 Hz and 600 Hz. If you are checking calibration, or if it becomes necessary to recalibrate the module, you must do so with the module in a FLEX I/O system. The module must communicate with the processor and industrial terminal.

Before calibrating the module, if ladder logic is used for calibration rather than the GUI available for the 1794-IF4I and 1794-IF2XOF2I modules, you must enter ladder logic into the processor memory, so that you can initiate BTWs to the module, and the processor can read inputs from the module.

Periodically (frequency based on your application), check your module calibration. Calibration may be required to remove module error due to aging of components in your system.

Calibration can be accomplished using any of three methods:

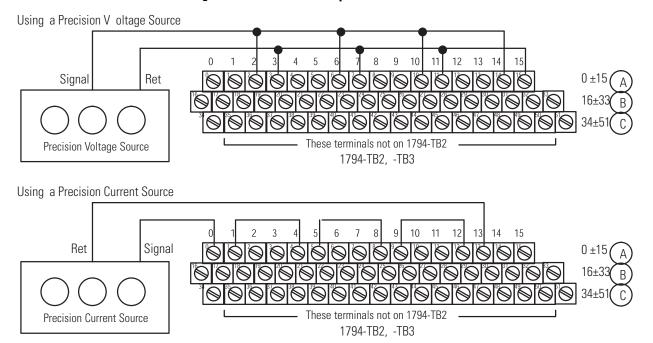
- manual calibration, as described below.
- 6200 I/O CONFIGURATION software refer to your 6200 software publications for procedures for calibrating.
- RSLogix GUI available for the IF2XOF2I and IF4I with an EtherNet/IP or ControlNet adapter. RSLogix guides the user through the process sequentially with no need for use of block transfers.

When calibrating your module, you must perform:

- Input and output module (in voltage mode) offset calibration first, gain calibration second
- Output module (in current mode) gain calibration first, offset calibration second, and another gain calibration third.

Tools and Equipment

In order to calibrate your input module you will need the following tools and equipment:


Table 7.1 Tools for Calibration

Tool or Equipment	Description	Model/Type	Available from:
Precision Voltage/Current Source	$0\dots 10.25 V, 10~\mu V$ resolution or better $0\dots 21~mA, 100~nA$ or better	HP3245A or equivalent	
Precision Voltage/Current Meter	010.5V, 10 μV or better 022 mA, 100 nA or better	Datron, Wavetek or equivalent	
Industrial Terminal and Interconnect Cable	Programming terminal for A-B family processors	Catalog numbers 1770-T3 or 1784-T45, 1784-T47, 1784-T50	Allen—Bradley Company Highland Heights, OH

ATTENTION: The isolated analog modules are shipped already calibrated for 150Hz, 300Hz and 600Hz. No recalibration is required when switching between these conversion rates.

Figure 7.1 Calibration Set-up

Calibrate Your Isolated Analog Input Module

The analog input module is shipped already calibrated for 150 Hz, 300 Hz and 600 Hz. No recalibration is required when switching between these conversion rates. Recalibration is required when going to 1200Hz conversion rate. Calibration of the module consists of applying a voltage or current across each input channel for offset and gain calibration.

Bits Used During Calibration

Refer to chapter 4 for bit/word descriptions. The following bits are used during calibration of your module:

IC = initiate configuration. This bit must be set (1) to initiate calibration

RV = revert to defaults. When this bit is set (1) during a calibration sequence, default values for the selected channels are used for the calibration coefficients. This bit normally reset (0).

QK = quick calibration. When this bit is set (1) during a calibration sequence, the calibration coefficient is stored to all related configurations for the selected channels. For example, if a calibration is performed in a voltage mode, QK allows the calibration coefficient to be stored to all voltage modes. This bit is normally reset (0).

CK = calibration clock. When this bit is set to 1, calibration mode starts and calibration coefficients for the selected channels are accepted. When cleared to 0, the accepted current calibration coefficients are stored to the selected channels, applied and calibration mode exited. Monitor status bits DN and BD of success of calibration.

GO = gain/offset select. When this bit is set to 1, a 0 to 1 to 0 transition pattern of the CK bit causes a gain calibration to be performed. When this bit is cleared to 0, a 0 to 1 to 0 transition pattern of the CK bit caused an offset calibration to be performed.

Offset Calibration for Inputs

Refer to the input timing diagram when calibrating the module. Normally all inputs are calibrated together. To calibrate the offset, proceed as follows:

- 1. The module must be calibrated in an operating system. Connect your module in a calibration setup as shown above.
- 2. Send a block transfer write (BTW) to the module with individual channel bits set for the configuration desired for each input. This effectively terminates any previous configuration of the module/channel.

Configuration Offset Gain cnfg Bit 15 IC Bit 14 1 · RV Bit 07 QK Bit 06 CK Bit 05 Bit 04 GO Bit 01 ± 03 chnl

Figure 7.2 Input Calibration Timing Diagram

- **3.** Apply offset voltage (0V) or current (0 mA) to the input(s) to be configured.
- 4. Send a block transfer write to set the IC bit and CK bit (1), and reset the GO bit (0). This tells the module to determine offset coefficients for the selected channels.

If you also set the RV bit to 1, the default values are assigned to each channel. The default values are near but not precisely on the calibration mark.

5. Send another BTW to the module to reset the CK bit (0). When the GO bit is low, the previously determined offset coefficients are stored in EEPROM for the selected channels. If QK is set (1) high, the same coefficients will be stored to all "like" configurations (for example, if configuration bits are set for a specific voltage, both unipolar/bipolar, x1/x2 – will have the same coefficients stored – See Table 7. 1). If calibrate for 0...20 mA current range, 4...20 mA range channels are also automatically calibrated.

Table 7.2 Input Calibration Timing Diagram

Configuration	Nominal Range	Data Type	Comments
4	020 mA	signed 2's complement %	If you calibrate any of this
8	020 mA	binary	group, the rest of the group will also be calibrated.
С	020 mA	offset binary	
6	010V	signed 2's complement %	If you calibrate any of this
A	010V	binary	group, the rest of the group will also be calibrated.
В	05V	binary	
2	±10V	signed 2's complement	If you calibrate any of this
7	±10V	signed 2's complement %	group, the rest of the group will also be calibrated.
E	±10V	offset binary	

Table 7.2	Input C	alibration	Timing	Diagram

Configuration	Nominal Range	Data Type	Comments
3	±5V	signed 2's complement	If you calibrate any of this
F	±5V	offset binary	group, the rest of the group will also be calibrated.
1	420 mA	signed 2's complement	If you calibrate 020 mA
5	420 mA	signed 2's complement %	range, all 4mA g s are calibrated.
9	420 mA	binary	
D	420 mA	offset binary	

6. Monitor the module block transfer read word. Clear the IC bit to 0, and offset calibration is terminated.

Set the Input Gain

Set the gain of the module second. You must set the offset before setting the gain.

- 1. Apply gain voltage (5.25V or 10.25V) or current (21.0 mA) to selected inputs.
- 2. Send a BTW to the module to set the IC bit and the CK bit to 1 and the GO bit to 1. This tells the module to determine gain voltage/current for the selected channels. If you also set the RV bit to 1, default values will be used on all selected channels.
- 3. Send a BTW to the module to reset the CK bit to 0 with the GO bit still 1. This stores previously determined coefficients into EEPROM on selected channels. If QK is set (1), the same coefficients will be stored to all "like" configurations. For example, if configuration is set to voltage, bipolar/polar, X1/X2 will also be configured. See Table 7.2.
- **4.** Monitor the module block transfer read word. Clear the IC bit. Gain calibration is terminated.

Calibrate Your Isolated Analog Output Module

Calibration of the module consists of measuring a voltage or current across each output, and calculating an offset or gain correction value.

Voltage calibration requires offset calibration followed by gain calibration. Current calibration requires gain calibration followed by offset calibration, and then a limited gain calibration using corrected coefficients.

Bits Used During Calibration

Refer to chapter 4 for bit/word descriptions. The following bits are used during calibration of your module:

IC = initiate configuration. This bit must be set (1) to initiate calibration

RV = revert to defaults. When this bit is set (1) during a calibration sequence, default values for the selected channels are used for the calibration coefficients. This bit normally reset (0).

QK = quick calibration. When this bit is set (1) during a calibration sequence, the calibration coefficient is stored to all related configurations for the selected channels. For example, if a calibration is performed in a voltage mode, QK allows the calibration coefficient to be stored to all voltage modes.

CK = calibration clock. When this bit is set to 1, calibration mode starts and calibration coefficients for the selected channels are accepted. When cleared to 0, the accepted current calibration coefficients are stored to the selected channels, applied and calibration mode exited. Monitor status bits DN and BD of success of calibration.

GO = gain/offset select. When this bit is set to 1, a 0 to 1 to 0 transition pattern of the CK bit causes a gain calibration to be performed. When this bit is cleared to 0, a 0 to 1 to 0 transition pattern of the CK bit caused an offset calibration to be performed.

Calibrate Voltage Outputs

Voltage calibration requires offset calibration followed by gain calibration.

Offset Calibration for Voltage Outputs

Refer to the output timing diagram when calibrating the module. Normally all outputs are calibrated together. To calibrate the offset of an output, proceed as follows:

- 1. If you are not calibrating all channels with the same configuration, select the channel to be calibrated by setting the bit for that channel.
- 2. Send a block transfer write (BTW) to the module with individual channel bits set for the configuration desired for each output. This effectively terminates any previous configuration of the module/channel.

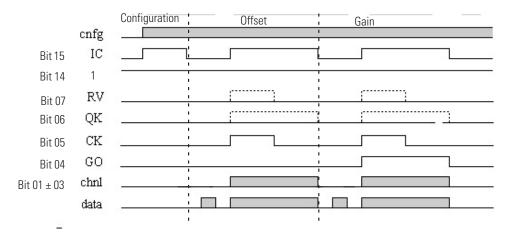


Figure 7.3 Output Calibration Timing Diagram

- 3. Clear all offset and gain coefficients by:
 - a. Set output data to 0 and the IC bit to 1
 - b. With GO = 0, toggle the CK bit
 - c. With GO = 1, toggle the CK bit
 - d. Clear the IC bit
- **4.** Send a block transfer write with the output values for offset voltage to the module (-31208 for -10V mode 2). Measure the output.

Calculate the offset correction for each channel:

$$offset_corr = (-10V - measured_value) X 3120.7619$$

- **5.** Enter these offset corrections in the output word for each channel being calibrated.
- **6.** Send a block transfer write with the IC bit and the CK bit set to 1. With GO low (0), the module copies the "offset_corr" coefficients (signed 2's complement format) from the data words into offset storage for the selected channels. If you set RV high (1), default values will be copied to all channels.
- 7. With a BTW, reset the CK bit (0). With the GO bit low (0), the previously determined offset coefficients are stored in EEPROM for the selected channel.
- **8.** Monitor the block transfer read. Clear the IC bit to 0. Offset calibration is completed.

Gain Calibration for Outputs

1. Send a block transfer write to the module to set the output values for gain voltage; +31208 for +10V mode 2. Measure the output. Calculate the gain correction for each channel as follows:

```
gain\_corr = (+10V - measured\_value) X 3276.76
```

- 2. Enter these gain corrections in the output word for each channel being calibrated.
- 3. Send a block transfer write with the CK bit set to 1. With GO high, the module will copy "gain_corr" coefficients (signed 2's complement format) from the data words into gain storage for the selected channels. If RV is high, default values will be copied to all channels.
- **4.** Send a block transfer write with CK set to 0. With GO high, the previously determined gain coefficients are stored into EEPROM as directed by the channel selection.
- 5. Clear the IC bit to 0. Gain calibration is terminated.

Calibrate Current Outputs

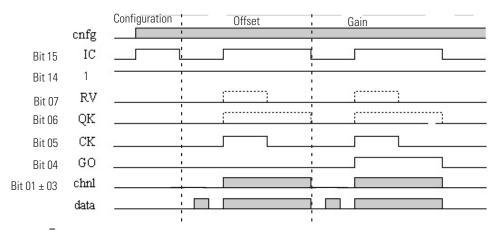
Current calibration requires gain calibration followed by offset calibration, and a limited gain calibration using corrected coefficients.

Gain Calibration for Current Outputs

1. Send a block transfer write to the module to set the output values for gain voltage; F3CF hex for 20.0 mA mode 8. Measure the output. Calculate the gain correction for each channel as follows:

```
gain\_corr = (0.02A - measured\_value) X 3202194.613
```

- 2. Enter these gain corrections in the output word for each channel being calibrated. Record each of the values to be used later.
- 3. Send a block transfer write with the CK bit set to 1. With GO high, the module will copy "gain_corr" coefficients (signed 2's complement format) from the data words into gain storage for the selected channels. If RV is high, default values will be copied to all channels.
- **4.** Send a block transfer write with CK set to 0. With GO high, the previously determined gain coefficients are stored into EEPROM as directed by the channel selection.


5. Clear the IC bit to 0. Gain calibration is terminated.

Offset Calibration for Current Outputs

Refer to the output timing diagram when calibrating the module. Normally all outputs are calibrated together. To calibrate the offset of an output, proceed as follows:

- 1. If you are not calibrating all channels with the same configuration, select the channel to be calibrated by setting the bit for that channel.
- 2. Send a block transfer write (BTW) to the module with individual channel bits set for the configuration desired for each output. This effectively terminates any previous configuration of the module/channel.

Figure 7.4 Output Calibration Timing Diagram

- 3. Clear all offset and gain coefficients by:
 - a. Set output data to 0 and the IC bit to 1
 - b. With GO = 0, toggle the CK bit
 - c. With GO = 1, toggle the CK bit
 - d. Clear the IC bit
- 4. Send a block transfer write with the output values for offset voltage to the module (+1560 for 0.5 mA mode 8). Measure the output.

Calculate the offset correction for each channel as follows:

$$offset_corr = (0.0005 - measured_value) X 1524873.192$$

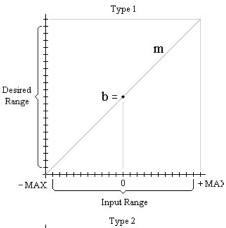
5. Enter these offset corrections in the output word for each channel being calibrated. Record each of the values to be used later.

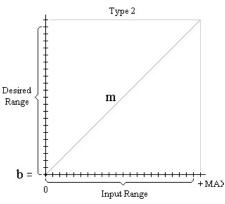
- 6. Send a block transfer write with the IC bit and the CK bit set to 1. With GO low (0), the module copies the "offset_corr" coefficients (signed 2's complement format) from the data words into offset storage for the selected channels. If you set RV high (1), default values will be copied to all channels.
- 7. With a BTW, reset the CK bit (0). With the GO bit low (0), the previously determined offset coefficients are stored in EEPROM for the selected channel.
- **8.** Monitor the block transfer read. Clear the IC bit to 0. Offset calibration is completed. Proceed with final gain calibration.

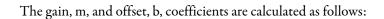
Final Gain Calibration for Current Inputs

After performing a gain calibration and an offset calibration:

 Enter a new gain correction calculated as follows into the respective output words:

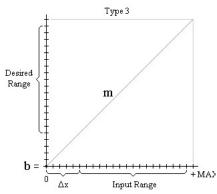

```
new gain_corr = gain_corr - (2 x offset_corr)
```


- 2. Send a block transfer write with the CK bit set to 1. With GO high, the module will copy "gain_corr" coefficients (signed 2's complement format) from the data words into gain storage for the selected channels. If RV is high, default values will be copied to all channels.
- **3.** Send a block transfer write with CK set to 0. With GO high, the previously determined gain coefficients are stored into EEPROM as directed by the channel selection.
- **4.** Clear the IC bit to 0. Gain calibration is terminated.


Scaling Inputs

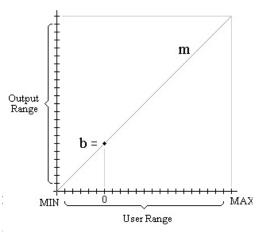
Inputs are scaled using the y = mx + b linear formula, as illustrated by the three types below.

Config- uration	Nominal Range	Data Type	Scale Figure	Output Range	ΔΧ
1	420 mA	signed 2's complement	Type 2	30840	NA
2	±10V	signed 2's complement	Type 1	63938	NA
3	±5V	signed 2's complement	Type 1	62416	NA
4	020V	signed 2's complement %	Type 2	10000	NA
5	420 mA	signed 2's complement %	Type 2	10000	NA
6	010V	signed 2's complement %	Type 2	10000	NA
7	±10V	signed 2's complement %	Type 1	20000	NA
8	020 mA	binary	Type 2	62415	NA
9	420 mA	binary	Type 2	61681	NA
А	010V	binary	Type 2	63938	NA
В	05V	binary	Type 2	62415	NA
С	020 mA	offset binary	Type 3	62416	1560
D	420 mA	offset binary	Type 3	30840	32768
E	±10V	offset binary	Type 3	63938	799
F	±5V	offset binary	Type 3	62416	1560



m = Desired Range / Input Range

b = Desired value when input returns zero (type 1 & 2)


 $b = -m(\Delta x) + (bottom of Desired Range) (type 3)$

Scaling Outputs

Outputs are scaled in the same manner as the inputs and are represented by the following illustration.

Config- uration	Nominal Range	Data Type	Output Range	Z
1	420 mA	signed 2's complement	30840	0
2	±10V	signed 2's complement	62416	0
3	±5V	signed 2's complement	62416	0
4	020V	signed 2's complement %	10000	0
5	420 mA	signed 2's complement %	10000	0
6	010V	signed 2's complement %	10000	0
7	±10V	signed 2's complement %	20000	0
8	020 mA	binary	62415	0
9	420 mA	binary	61681	0
А	010V	binary	62415	0
В	05V	binary	62415	0
С	020 mA	offset binary	31208	32768
D	420 mA	offset binary	30840	32768
Е	±10V	offset binary	62416	32768
F	±5V	offset binary	62416	32768

The gain, m, and offset, b, coefficients are calculated as follows:

m = Output Range / User Range

 $b = \mathbf{Z} - mx$

where: \mathbf{Z} is the value, from the table, that sends a "zero" output⁽¹⁾, \mathbf{x} 0 is the user signal that is associated with "zero" output.

(1) in 4...20 mA modes, "zero" is 4 mA.

Chapter Summary

In this chapter, you learned how to calibrate your isolated analog module.

Specifications

Specifications for the modules, including environmental and certifications can be found in the following Installation Instructions.

Catalogs	Publication
1794-0F4I	<u>1794-IN037</u>
1794-IF4I	1794-IN038
1794-IF2X0F2I	1794-IN039
1794-IF4IXT, 1794-0F4IXT, 1794-IF2X0F2IXT	<u>1794-IN129</u>
1794-IF4ICFXT	1794-IN130

Filter Response for 150 Hz, 300 Hz and 600 Hz Conversion

Figure A.1 Filter Response at 150 Hz Conversion

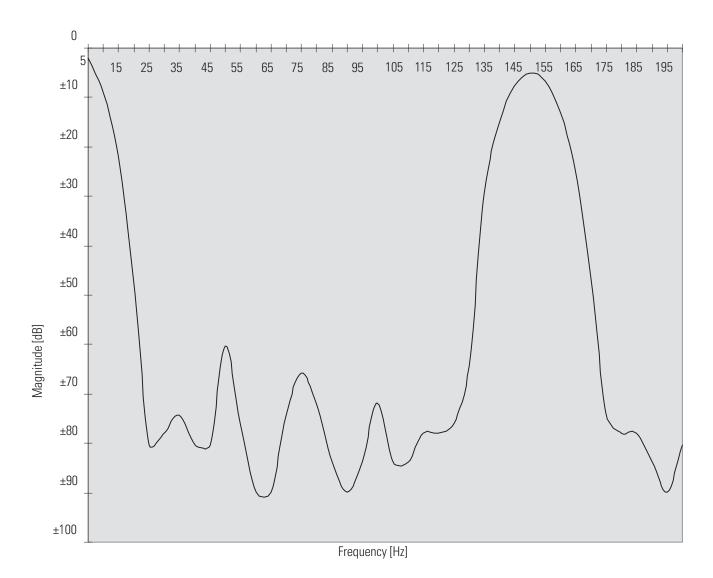


Figure A.2 Filter Response at 300 Hz Conversion

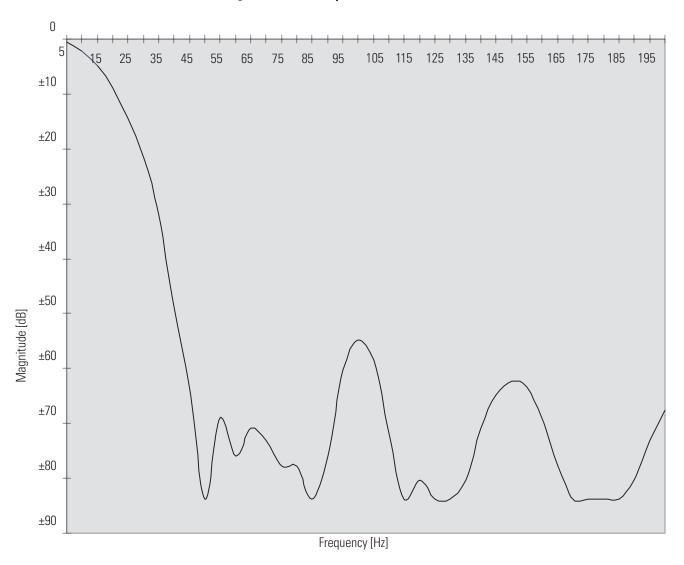
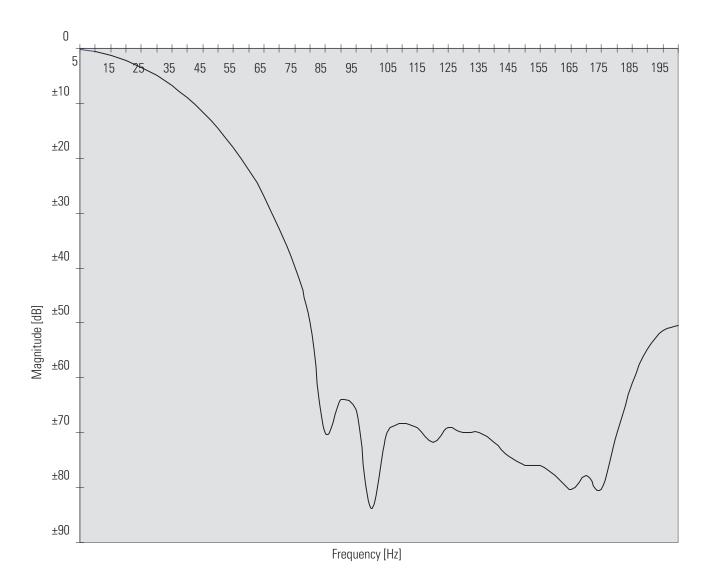



Figure A.3 Filter Response at 600 Hz Conversion

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products.

At http://www.rockwellautomation.com/support/, you can find technical manuals, a knowledge base of FAQs, technical and application notes, sample code and links to software service packs, and a MySupport feature that you can customize to make the

best use of these tools.

For an additional level of technical phone support for installation, configuration, and troubleshooting, we offer TechConnect

support programs. For more information, contact your local distributor or Rockwell Automation representative, or visit http://www.rockwellautomation.com/support/.

Installation Assistance

If you experience a problem within the first 24 hours of installation, review the information that is contained in this manual.

You can contact Customer Support for initial help in getting your product up and running.

United States or Canada	1.440.646.3434
	Use the <u>Worldwide Locator</u> at http://www.rockwellautomation.com/support/americas/phone_en.html , or contact your local Rockwell Automation representative.

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing facility. However, if your product is not functioning and needs to be returned, follow these procedures.

	Contact your distributor. You must provide a Customer Support case number (call the phone number above to obtain one) to your distributor to complete the return process.
Outside United States	Please contact your local Rockwell Automation representative for the return procedure.

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication <u>RA-DU002</u>, available at http://www.rockwellautomation.com/literature/.

Rockwell Automation maintains current product environmental information on its website at http://www.rockwellautomation.com/rockwellautomation/about-us/sustainability-ethics/product-environmental-compliance.page

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat: 634752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444 Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleetlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640 Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846