ABB Robotics

Technical reference manual
RAPID Instructions, Functions and Data types

viy AN HD HD
Power and productivity
for a better world™ " I. ..

© Copyright 2004-2010 ABB. All rights reserved.

Technical reference manual
RAPID Instructions, Functions and Data types

RobotWare 5.13

Document ID: 3HAC 16581-1
Revision: J

The information in this manual is subject to change without notice and should not be
construed as a commitment by ABB. ABB assumes no responsibility for any errors that
may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be
construed as any kind of guarantee or warranty by ABB for losses, damages to persons
or property, fithess for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from
use of this manual and products described herein.

This manual and parts thereof must not be reproduced or copied without ABB's written
permission, and contents thereof must not be imparted to a third party nor be used for
any unauthorized purpose. Contravention will be prosecuted.

Additional copies of this manual may be obtained from ABB at its then current charge.

© Copyright 2004-2010 ABB All rights reserved.

ABB AB
Robotics Products
SE-721 68 Vasteras
Sweden

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

Table of Contents

L@ = 13
1 Instructions 15
1.1 AccSet - Reducesthe acceleration ot 15
1.2 ActUnit - Activatesamechanical Unit e 17
1.3Add- AddsanumeriCValUe.ot e e 19
1.4 AliaslO - Definel/O signa withadliasname i e e 21
15 = - ASSIgNS AVAIUE. . . .ot 24
1.6 BitClear - Clear aspecified bitinabytedata. i 26
1.7 BitSet - Set aspecified bitinabytedata i e 28
1.8 BoOKErrNo - Book a RAPID system error NUMDErottt i e e e 30
1.9 Break - Break program €XECULION. oottt et e e e e e e e et e e 32
1.10 CdlIlByVar - Cal aprocedure by avariable. 33
1.11 CancelLoad - Cancel loading of amodule. e e e 35
1.12 CheckProgRef - Check program references.t 37
1.13 CirPathMode - Tool reorientation during circlepath. i, 38
114 Clear - Clearsthevaluet e e 43
1.15 ClearlOBUff - Clear input buffer of aserial channel 44
1.16 ClearPath - Clear current path i et e e e 45
1.17 ClearRawBytes - Clear the contents of rawbytesdata.o i, 49
1.18 ClkReset - Resetsaclock used for timingottt 51
1.19 ClkStart - Startsaclock used for timing.t e e 52
1.20 CIkStop - Stopsaclock used for timing. oot e e e e 54
1.21 Close- Closesafileorserial channel. o i e 55
1.22 CloSeEDIr - CloSe adireClOry . . .ot ottt e e e e e 56
1.23 Comment - COMMEBNE oottt e e e e s 57
1.24 Compact IF - If aconditionismet, then... (oneinstruction) 58
1.25 ConfJ - Controls the configuration during jointmovementot iinan.. 59
1.26 ConfL - Monitorsthe configuration during linear movementcoiiiinenn.n. 61
1.27 CONNECT - Connectsan interruptto atraproutine ...t ennennn.. 63
1.28 CopyFile- Copy afile e 65
1.29 CopyRawBytes - Copy the contentsof rawbytesdata.o, 67
1.30 CorrClear - Removes all correction generators oottt i 70
1.31 CorrCon - ConNectSto aCorrection geNerator o vttt e ettt 71
1.32 CorrDiscon - Disconnects from acorrection generator vttt ie e ie e e 76
1.33 CorrWrite - Writesto acorrection generatoro vttt et e e e e 77
1.34 DeactUnit - Deactivatesamechanical unit. 79
1.35 DECr - DECremMENtS DY Lot e e e 81
1.36 DitherAct - Enablesdither for soft Servo i 83
1.37 DitherDeact - Disablesdither for SOft SErvo.o 85
1.38 DropWObj - Drop Work objeCt ON CONVEYOTottt et ettt e et ettt e 86
1.39 EOffsOff - Deactivates an offset for external axes. e 87
1.40 EOffsOn - Activates an offset for external axes e 88
1.41 EOffsSet - Activates an offset for external axesusingknownvalues. 90
1.42 EraseModule- Eraseamodule.ottt e 92
1ABErrLog - Write an €O MESSA0E .« .« o v o v v et et ettt ettt ettt e et 94
1.44 ErrRaise - Writesawarningand callsanerrorhandler 98
1.45 ErrWrite - WIite an @rmOr MESSA0E . . .« . vttt ettt et e e et e e e 103
146 EXIT - Terminates program eXECULIONottt ettt ettt e et ettt 105
1.47 ExitCycle- Break current cycleand start next. 106
1.48 FOR - Repeatsagiven number of times.o it 108
149 GetDatava - Getthevalueof adataobject. i 110
150 GetSysData- Get systemdatao o e 113
1.51 GetTrapData- Get interrupt datafor current TRAP. ot e e 115
1.52 GOTO - GOESt0 @aNewW INSIIUCHION.ottt e e e e e e e e e e e 117

3HAC 16581-1 Revision: J 3

Table of Contents

1.53 GripLoad - Definesthe payload fortherobot i 119
1.54 HollowWristReset - Reset hollow wrist for IRB5402 and IRB5403. 121
155 IDelete- CancelsS an intermUPL. oo ottt e e e 123
1.56 IDisable - DisableS INterTUPLS.ot 124
157 IEnable- Enables interrupts.ot 125
1.58 IError - Orders an interrupt ON ETOIS. . . . oo vttt et e e e e e e e e e e e e e 126
1591F - If aconditionismet, then ...; otherwise i 129
160 INncr - Increments oy L o 131
1.61 IndAMove - Independent absolute positionmovement. 133
1.62 IndCMove - Independent continUOUS MOVEMENt.ottt t ittt et ia e 137
1.63 IndDMove - Independent deltaposition movement. i 141
1.64 IndReset - INdependent reSatottt 144
1.65 IndRMove - Independent relative positionmovement. i 149
1.66 InvertDO - Invertsthe value of adigital output signal oo 154
167 10BuUSStart - Start of /O BUSo e 155
1.68 |0BusState - Get current state of 1/ODUSot 156
1.69 10Disable- Disable l/O UNit o e 159
170 10Enable- Enable /O Unit. 162
1.71 IPers - Interrupt at value change of apersistentvariable. 165
1.72 IRMQMessage - Orders RMQ interruptsfor adatatype.t 167
1.731SignalAl - Interruptsfrom analog inputsignal 171
1.741Signa AO - Interruptsfrom analog output signalt 182
1.751SignaDlI - Ordersinterrupts from adigital inputsignal. o .. 186
1.76 1SignalDO - Interrupts from adigital output signalo 189
1.77 1Signa Gl - Ordersinterrupts from agroup of digital input signals. 192
1.78 1SignalGO - Ordersinterrupts from agroup of digital output signals. 195
1.791Sleep - Deactivates an iNterrUPtot 198
1.80 ITimer - Ordersatimed INtErmUPL.ot e e e e 200
181 IVarVaue- ordersavariablevaueinterrupt. 202
1.82 IWatch - Activates an iNterruptot e e e e 205
183 LabE - LiNeName . .. oot 207
1.84 Load - Load aprogram module during eXecutionoii i 208
1.85 Loadld - Load identification of tool or payload. i 212
1.86 MakeDir - Create anew direClOryottt ittt ettt e 218
1.87 ManLoadldProc - Load identification of IRBP manipulators., 219
1.88 MechUnitLoad - Defines a payload for amechanical unit, 223
1.89 MotionSup - Deactivates/Activates motion SUPENVISIONo e e e 227
1.90 MoveAbs] - Moves the robot to an absolutejoint position. 230
1.91 MoveC - Movestherobot Circularly 236
1.92 MoveCDO - Moves the rabot circularly and sets digital outputinthecorner. 242
1.93 MoveCSync - Movesthe robot circularly and executesa RAPID procedure 246
1.94 MoveExtJ - Move one or several mechanical unitswithout TCP, 250
1.95 Movel- Movestherobot by jointmovement i 253
1.96 MovelDO - Moves the robot by joint movement and sets digital output inthecorner............ 257
1.97 MovelSync - Moves the robot by joint movement and executesa RAPID procedure 260
1.98 Movel - Movestherobot linearly 264
1.99 MovelL DO - Moves the robot linearly and sets digital outputinthecorner 268
1.100 MoveL Sync - Moves the robot linearly and executesa RAPID procedure. 271
1.101 MToolRotCalib - Calibration of rotation for movingtool 275
1.102 MTool TCPCalib - Calibration of TCP for movingtool. 278
1.103 Open - Opensafileor serial channel 281
1.104 OpenDir - Open adireClOryo vt e 285
1.105 PackDNHeader - Pack DeviceNet Header into rawbytesdata. 287
1.106 PackRawBytes - Pack datainto rawbytesdata.ccoo it 290
1.107 PathAccLim - Reduce TCP accelerationalongthepath 295

4 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

Table of Contents

1.108 PathRecMoveBwd - Move path recorder backwards.o oo, 298
1.109 PathRecMoveFwd - Move path recorder forwardt 305
1.110 PathRecStart - Start the path recorder e 308
1.111 PathRecStop - Stop thepathrecorder. i e 311
1.112 PathResol - Override path resolutionot e 314
1.113 PDispOff - Deactivates program displacement 316
1.114 PDispOn - Activates program displacementttt e e 317
1.115 PDispSet - Activates program displacement using knownframe 321
1.116 ProcCall - Callsanew proCedure.ottt e e e e e e e 323
1.117 ProcerrRecovery - Generate and recover from process-move error. . ..o v ve e e i e enns 325
1.118 PulseDO - Generatesapulseon adigital outputsignalo i 331
L1119 RAISE-Callsanerror handler. 334
1.120 RaiseToUser - Propagatesan errortouser level i i e 337
1.121 ReadAnyBin - Read datafrom abinary serial channel orfile........... 340
1.122 ReadBlock - read ablock of datafromdevice........... 343
1.123 ReadCfgData - Reads attribute of asystemparameter. ..., 345
1.124 ReadErrData - Getsinformation about an errorottt 349
1.125 ReadRawBytes- Read rawbytesdata.t 352
1.126 RemoveDir - Delete adireCtoryo vt e 355
1.127 RemoveFile- Deleteafile.o 356
1.128 RenameFile- Renameafile. i 357
1.129 Reset - Resetsadigital output Signalo 359
1.130 ResetPPMoved - Reset state for the program pointer moved inmanual mode 360
1.131 ResetRetryCount - Reset the number of retries 361
1.132 RestoPath - Restoresthe path after aninterrupt. e e 362
1.133 RETRY - Resume eXeCUtion after an &rror vttt e ettt 364
1.134 RETURN - Finishesexecution of aroutinet eenn 365
1.135Rewind - Rewind file positionot 367
1.136 RMQEmptyQueue - Empty RAPID MeSsage QUEUE.o v it e e 369
1.137 RMQFindSlot - Find adlot identity fromtheslotname. oL, 371
1.138 RMQGetMessage - Get an RMQ MESSAgE. . . . oot vttt e e e e 373
1.139 RMQGetMsgData - Get the datapart froman RMQmessage.o oo n 377
1.140 RMQGetMsgHeader - Get header information fromanRMQmessagec.oooevn .. 380
1.141 RMQReadWait - Returnsmessage fromRMQot e 383
1.142 RMQSendMessage - Send an RMQ datamesSage.« o v v v i vt i 386
1.143 RMQSendWait - Send an RMQ data message and wait for aresponse. 390
1.144 Save- Save aprogram module.ot 396
1.145 SCWrite - Send variable datato aclient application 399
1.146 SearchC - Searches circularly using therobot o 402
1.147 SearchExtJ - Search with one or several mechanical unitswithout TCP. 410
1.148 SearchL - Searcheslinearly usingtherobot. 416
1.149 SenDevice - CONNECt t0 @ SENSOr AEVICE o\ttt e e e i 425
1.150 Set - Setsadigital output Signal e 427
1.151 SetAllDataVal - Set avalueto al dataobjectsinadefinedset.............., 429
1.152 SetAO - Changesthevalue of ananalog output signal 431
1.153 SetDataSearch - Definethe symbol setinasearchsequence.ot 433
1.154 SetDataVd - Setthevalueof adataobject ... i 437
1.155 SetDO - Changesthe value of adigital output signal. i 440
1.156 SetGO - Changesthe value of agroup of digital outputsignals 442
1.157 SetSysData- Set SyStemM dala.t 445
1.158 SingArea - Definesinterpolation around singular points. 447
1.159 SkipWarn - Skipthelatest warningt e e 449
1.160 SocketAccept - Accept aninComMIiNg CONNECHIONttt et e e e i eee e 450
1.161 SocketBind - Bind asocket to my IP-addressand portt 453
1.162 SocketClose - Close @aSOCKELot 455

3HAC 16581-1 Revision: J 5

Table of Contents

1.163 SocketConnect - Connect to aremote COMPULEY oottt e it e e iaena 457
1.164 SocketCreate - Create aNeW SOCKELottt ettt 460
1.165 SocketListen - Listen for incoming ConNectionSot 462
1.166 SocketReceive - Receive datafromremote computert 464
1.167 SocketSend - Send datato remote COMPULES v ettt e 469
1.168 SoftAct - Activatingthe Soft SBrvo.o 473
1.169 SoftDeact - Deactivatingthe soft Servoo i 475
1.170 SpeedRefresh - Update speed override for ongoingmovement. 476
1.171 SpyStart - Start recording of executiontimedata i 479
1.172 SpyStop - Stop recording of timeexecutiondata.o v e 481
1.173 StartLoad - Load a program module during eXecutionot einneenn... 482
1.174 StartMove - Restartsrobot movement 486
1.175 StartMoveRetry - Restarts robot movement and execution. 489
1.176 STCalib - Calibrate aServo TOO0lo vt e e e 492
1.177 STClose- Close aServo TOOlo v it e et e e 496
1.178 StepBwdPath - Move backwardsonesteponpath i i 499
1.179 STIndGun - Setstheguninindependent mode.ot 501
1.180 STIndGunReset - Resetsthe gun fromindependentmode 503
1.181 SToolRotCalib - Calibration of TCP and rotation for stationarytool 504
1.182 STool TCPCalib - Cdlibration of TCP for stationary tool 507
1.183 StOp - StOPS Program EXECULTON ottt e ettt e e e e e e e e 510
1.184 STOPEN - OPEN @SEVO TO0L . . o v vttt e e e e et e e e 513
1.185 StopMove - StopSTrobot MOVEMENLttt e e e 515
1.186 StopMoveReset - Reset thesystemstopmovestateot 519
1.187 StorePath - Storesthe path when aninterrupt occurs.o e 521
1.188 STTUNE- TUNING SEIVO TOO! . . . o ottt ettt e e e e e e e e e e 523
1.189 STTuneReset - Resetting Servotool tUNING.o vt e 527
1.190 SyncMoveOff - End coordinated synchronized movements.ccvviiiiinennenn .. 528
1.191 SyncMoveOn - Start coordinated synchronized movements. 534
1.192 SyncMoveResume - Set synchronized coordinated movements. 541
1.193 SyncMoveSuspend - Set independent-semicoordinated movements. 543
1.194 SyncMoveUndo - Set independent movements.t 545
1.195 SystemStopAction - Stoptherobot system o 547
1.196 TEST - Depending on the value of an eXpressiono oo e e et e 549
1.197 TestSignDefine- Definetest Signalottt 551
1.198 TestSignReset - Reset all test signal definitions ... i 553
1.199 TextTabinstall - Installingatexttable. i i 554
1.200 TPErase - Erasestext printedonthe FHlexPendant 556
1.201 TPReadDnum - Reads anumber fromthe FlexPendant 557
1.202 TPReadFK - Readsfunction Keyso e e 560
1.203 TPReadNum - Reads anumber fromtheFlexPendant 564
1.204 TPShow - Switchwindow ontheFlexPendant 567
1.205 TPWrite- WritesontheFlexPendant e 568
1.206 TriggC - Circular robot movement withevents. i 570
1.207 TriggChecklO - Defines 10 check at afixed position. 577
1.208 TriggEquip - Define afixed positionand timel/O eventonthepath 582
1.209 Triggint - Definesapositionrelated interrupt 588
1.210 Triggl O - Define afixed position or time |/O event near astoppoint.oovun... 592
1.211 TriggJ - Axis-wise robot movementswithevents. i, 597
1.212 TriggL - Linear robot movementswithevents. it 603
1.213 TriggL|10s - Linear robot movementswith l/Oevents 610
1.214 TriggRampAO - Define afixed positionramp AO eventonthepath. 616
1.215 TriggSpeed - Defines TCP speed proportional analog output with fixed position-time scale event. 622
1.216 TriggStopProc - Generate restart datafor trigg signalsat Stopo oo 629
1.217 Tryint - Test if dataobjectisavalidinteger i i 634

6 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

Table of Contents

1.218 TRYNEXT - Jumps over an instruction which hascausedanerror 636
1.219 TuneReset - ReSatting SErVO tUNING oo ottt e e 637
1.220 TUNESEIVO - TUNING SEIVOS. . . o ot s ettt e e et e et e e e e e e e e e e e e 638
1.221 UIMsgBox - User Message Dialog Box typebasiCove i 644
1.222 UIShow - User Interface showo et i 651
1.223 UnLoad - UnLoad a program module during eXecutioncouiiiiiineennnennn.. 655
1.224 UnpackRawBytes - Unpack datafromrawbytesdata 658
1.225 Vel Set - Changesthe programmed VEIOCItYot 662
1.226 WaitAl - Waitsuntil an analog input signal valueisset ..., 664
1.227 WaitAO - Waits until an analog output signal valueisset. 667
1.228 WaitDI - Waitsuntil adigital input signal isset i 670
1.229 WaitDO - Waitsuntil adigital output signal iSSet.o 672
1.230 WaitGl - Waits until agroup of digital input signalsaresetcoviiiiiinann.. 674
1.231 WaitGO - Waits until agroup of digital output signalsareset, 678
1.232 WaitLoad - Connect the loaded moduletothetaskt 682
1.233 WaitRob - Wait until stop point or zero speed.o vt 686
1.234 WaitSyncTask - Wait at synchronization point for other programtasks. 688
1.235 WaitTestAndSet - Wait until variableunset -thenset. i ... 692
1.236 WaitTime - Waitsagivenamount of time. i i i e e 695
1.237 WaitUntil - Waitsuntil aconditionismet i e 697
1.238 WaitWObj - Wait for work object onconveyor. ... 701
1.239 WarmStart - Restart thecontroller 704
1240 WHILE - REPEAS @SIONG 85 .o« v o v v ettt e e e e et e e e e e e e 705
1.241 WorldAccLim - Control acceleration in world coordinatesystem., 707
1.242 Write - Writesto a character-based fileor serial channel 709
1.243 WriteAnyBin - Writes datato abinary serial channel or file., 713
1.244 WriteBin - Writesto abinary serial channel 716
1.245 WriteBlock - write block of datatodevice. 719
1.246 WriteCfgData - Writes attribute of asystem parameter. 721
1.247 WriteRawBytes - Writerawbytesdata. o 725
1.248 WriteStrBin - Writesastringtoabinary serial channel. L 727
1249 WriteVar - Writevariableo 729
1.250 WZBoxDef - Defineabox-shapedworldzone i 732
1.251 WZCyIDef - Defineacylinder-shapedworldzoneo 734
1.252 WZDisable - Deactivate temporary world zone SUPerviSionoovveii it 736
1.253 WZDOSet - Activate world zoneto set digital output 738
1.254 WZEnable - Activate temporary world Zzone SUpervisionc.covieienennnnnann.. 742
1.255 WZFree - Erase temporary world zone SUPErVISION.o v it e 744
1.256 WZHomelJointDef - Define aworld zone for homejoints., 746
1.257 WZLimJointDef - Define aworld zone for limitationinjoints. 749
1.258 WZLimSup - Activate world zone limit SUpervision. 753
1.259 WZSphDef - Define asphere-shapedworldzonet 756
2 Functions 759
2.1 Abs- Getstheabsolutevalue. o 759
2.2 ACos- Calculatesthearc cosinevaluet e 761
2.3 AOutput - Readsthevaueof ananalogoutputsignal. ...t 762
24 ArgName - GEtSarguMENt NAIMEo\ o ettt et e e et e et et e e 764
25ASIn-CaculatesthearcSiNeValUue.t 767
26 ATan- Cdculatesthearctangent value. e e e e 768
2.7 ATan2 - Calculatesthearctangent2 value. oo 769
2.8 BitAnd - Logical bitwise AND - operationonbytedata., 770
2.9 BitCheck - Check if aspecified bitinabytedataisset.......... ..., 772
2.10 BitLSh - Logical bitwise LEFT SHIFT - operationonbyte. oin... 774
2.11 BitNeg - Logical bitwise NEGATION - operationonbytedata 776

3HAC 16581-1 Revision: J 7

Table of Contents

2.12 BitOr - Logical bitwise OR - operationonbytedata.o ... 778
2.13 BitRSh - Logical bitwise RIGHT SHIFT - operationonbyte.......... oo .. 780
2.14 BitXOr - Logical bitwise XOR - operationonbytedata. 782
2.15 ByteToStr - Convertsabytetoastringdata 784
2.16 CalcJointT - Calculatesjoint anglesfromrobtarget. 786
2.17 CalcRobT - Calculates robtarget fromjointtarget 789
2.18 CalcRotAxFrameZ - Calculate arotational axisframe it 791
2.19 CalcRotAxisFrame - Calculate arotational axisframe, 795
2.20 CDate - Readsthecurrent date @S astringo ottt i 799
2.21 ClointT - Readsthecurrent jJoiNt anglesot e ettt 800
2.22 CIkRead - Readsaclock used for timing.ot e e 802
2.23 CorrRead - Readsthecurrent total offsets. i 803
2.24 Cos- Caculatesthe cosiNeValUE.ottt e 804
2.25 CPos - Reads the current position (POS) data.ot 805
2.26 CRobT - Reads the current position (robtarget) data. 807
2.27 CSpeedOverride - Readsthe current overridespeed ... 810
228 CTime- Readsthecurrenttimeasastring oottt e e 812
229 CTool - Readsthecurrenttool data.ttt e e 813
2.30 CWODbj - Readsthecurrent work objectdatacoiiiiii i i 814
2.31 DecToHex - Convert fromdecimal tohexadecimal 815
2.32 DefAccFrame - Definean accurateframe. 816
2.33 DefDFrame - Defineadisplacement frame. 819
234 DefFrame- Defineaframe i 822
2.35Dim- Obtainsthesize of @narrayttt 825
2.36 Distance - Distance between tWo POINESot e 827
2.37 DnumToNuUm - ConvertsdnUmM tO NUMottt et e et e e e ee e e 829
2.38 DotProd - Dot product Of tWO POSVECIONS.ottt et 831
2.39 DOutput - Reads the value of adigital outputsignal i 833
240 EulerZY X - Getseuler anglesfromorient.ot 835
2.41 EventType - Get current event typeinsideany eventroutine, 837
2.42 ExecHandler - Get type of executionhandler i i 839
243 ExecLeve - Getexecution level 840
244 Exp - Calculatesthe exponential value o 841
245 FileSize- Retrievethesizeof afile. 842
246 FileTime - Retrievetimeinformation about afile............. i ... 845
247 FSSize - Retrievethesizeof afilesystem. 848
2.48 GetMecUnitName - Get the name of the mechanical unit. 851
2.49 GetNextMechUnit - Get name and datafor mechanical units. 852
2.50 GetNextSym - Get next matching symbol 855
2.51 GetSysinfo - Get information about thesystem. i 857
2.52 GetTaskName - Gets the name and number of currenttask, 860
253 GetTime - Readsthe current timeasanumericvalue. 862
2.54 GlnputDnum - Read value of group input signal. i e 864
2.55 GOutput - Reads the value of agroup of digital output signals.t 866
2.56 GOutputDnum - Read value of group output Signalt 868
2.57 HexToDec - Convert from hexadecimal todecimal i, 870
2.58 Indinpos - Independent axisSin POSItiON StatUS.o oottt e 871
2.59 IndSpeed - Independent SPeed StaUSottt e 873
2.60 |OUnitState - Get current state of /O UNit.o 875
261 1IsFile- Checkthetypeof afile e 878
2.62 IsMechUnitActive - Ismechanical unitactive. e 882
2,63 ISPErS - S PSS ONt . . . oo 883
2.64 IsStopMoveAct - Isstopmoveflagsactive. o 884
2.65 IsStopStateEvent - Test whether moved program pointer 886
2.66 IsSyncMoveOn - Test if in synchronized movementmode.ccoviii s, 888

8 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

Table of Contents

2.671SSysld - Test system identity.ot 890
268 1sVar-Isvariable. 891
2.69 MaxRobSpeed - Maximum robot Speed.ot 892
2. 70 MirPos - Mirroring of apoSitioniu it e e e 893
2.71 ModExist - Check if programmodule exist. ottt 895
2.72 ModTime - Get file modify timefor theloadedmodulet 896
2.73 MoationPlannerNo - Get connected motion planner number i, 898
2.74 NonMotionMode - Read the Non-Motion executionmode.covvi i in i 900
2.75NOrient - Normalize orientation.t 901
2.76 NumToDnum - Converts nuM to dnUMo ottt e e i 903
2.77 NumToStr - Converts numeric Value toO SIINGo oo vt 904
2.78 Offs - Displacesarobot position 906
2.79 OpMode - Read the Operating MOGdE. oottt et e et et et e 908
2.80 OrientZY X - Buildsan orient fromeulerangles 909
2.81 ORobT - Removes the program displacement from aposition 911
2.82 ParldPosValid - Valid robot position for parameter identification 913
2.83 ParldRobValid - Valid robot type for parameter identification.............................. 916
2.84 PathLevel - Get current path level 919
2.85 PathRecValidBwd - Isthereavalid backward pathrecorded 921
2.86 PathRecValidFwd - Isthere avalid forward pathrecorded 924
2.87 PFRestart - Check interrupted path after power failure i il 928
288 POSEINV - INVENSPOSE AaA. o\ ottt ettt e 929
2.89 PoseMult - Multipliesposedata.o oo 931
2.90 PoseVect - Appliesatransformation to avectort 933
2.91 Pow - Calculatesthepower of avalue.ttt e e e e 935
2.92 PPMovedinManMode - Test whether the program pointer is moved in manual mode. 936
2.93 Present - Testsif an optional parameter isusedt 937
2.94 ProgMemFree - Get the size of free program memoryvviii i 939
2.95 RawBytesLen - Get thelength of rawbytesdata i 940
2.96 ReadBin - Reads abytefrom afileor serial channel 942
2.97 ReadDir - Read next entry in adireCtorycou ittt e e 944
2.98 ReadMotor - Readsthe current motor angles.t 947
2.99 ReadNum - Reads anumber from afileor serial channel 949
2.100 ReadStr - Reads astring from afileor serial channel, 952
2.101 ReadStrBin - Reads a string from abinary serial channel orfile. 956
2102 ReadVar - Read variablefromadevice. 958
2.103 RelTool - Make adisplacement relativetothetool i, 961
2.104 RemainingRetries- Remaining retrieslefttodo i 963
2.105 RMQGetSlotName - Get thenameof anRMQclient i, 964
2.106 RobName - Get the TCP robot NaMeot e e 966
2.107 RobOS - Check if executioniSONRC Or V. oottt i et 968
2.108 Round - Round iSanumMeriCValue.ottt e e e e 969
2109 RunMode - Read therunning mode. i e e 971
2110 Sin- Caculatesthe SINEeValUE oot e 972
2.111 SocketGetStatus - Get current socket state. oot 973
2112 Sgrt - Calculatesthesquare root ValUe.o oot e 976
2.113 STCalcForce - Calculate thetipforceforaServoTool 977
2.114 STCalcTorque - Calc. the motor torquefor aservotool 979
2.115 STIsCalib - Testsif aservotool iscalibrated. 981
2.116 STIsClosed - Testsif aservotool isclosedoo v e 983
2.117 STlsIndGun - Testsif aservotool isinindependentmode.coov ... 985
2.118 STIsOpen - Testsif asarvotool ISOPEN.ot e et e 986
2.119 strDigCalc - Arithmetic operations with datatype stringdig 988
2.120 StrDigCmp - Compare two stringswithonly digits. o 991
2.121 StrFind - Searchesfor acharacter inastringovi it e e 994

3HAC 16581-1 Revision: J 9

Table of Contents

2.122 StrLen - Gets the string length
2.123 StrMap - Maps a string
2.124 StrMatch - Search for pattern in string
2.125 StrMemb - Checks if a character belongs to a set
2.126 StrOrder - Checksif strings are ordered
2.127 StrPart - Finds a part of a string
2.128 StrToByte - Converts a string to a byte data
2.129 StrToVal - Convertsa string to avalue
2.130 Tan - Calculates the tangent value
2.131 TaskRunMec - Check if task controls any mechanical unit
2.132 TaskRunRob - Check if task controls some robot
2.133 TasksInSync - Returns the number of synchronized tasks
2.134 TestAndSet - Test variable and set if unset
2135 TestDI - Testsif adigital input is set
2.136 TestSignRead - Read test signal value
2.137 TextGet - Get text from system text tables
2.138 TextTabFreeToUse - Test whether text tableisfree
2.139 TextTabGet - Get text table number
2.140 Trunc - Truncates a numeric value
2.141 Type - Get the data type name for avariable
2.142 Ul AlphaEntry - User Alpha Entry
2.143 UlIClientExist - Exist User Client
2.144 UIDnumEntry - User Number Entry
2.145 UIDnumTune - User Number Tune
2.146 UlListView - User List View
2.147 UIMessageBox - User Message Box type advanced
2.148 UINumEntry - User Number Entry
2.149 UINumTune - User Number Tune
2.150 VdidIO - valid I/O signal to access
2.151 VaToStr - Converts avaueto a string
2.152 VectMagn - Magnitude of a pos vector

3 Data types

3.1 aiotrigg - Analog I/0 trigger condition
3.2 bool - Logica vaues
3.3 btnres - Push button result data
3.4 busstate - State of 1/O bus
3.5 buttondata - Push button data
3.6 byte - Integer values 0 - 255
3.7 clock - Time measurement
3.8 confdata - Robot configuration data
3.9 corrdescr - Correction generator descriptor
3.10 datapos - Enclosing block for a data object
3.11 dionum - Digital values (0 - 1)
3.12 dir - File directory structure
3.13 dnum - Double numeric values
3.14 errdomain - Error domain
3.15 errnum - Error number
3.16 errstr - Error string
3.17 errtype - Error type
3.18 event_type - Event routine type
3.19 exec_level - Execution level
3.20 extjoint - Position of external joints
3.21 handler_type - Type of execution handler
3.22 icondata - Icon display data

10

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

Table of Contents

3.23 identno - Identity for MOVE INStTUCtIONS. i e e et 1123
.24 0ntnum - INterrupt Identityo 1125
3.25i0dev - Serial channelsandfiles. 1127
3.26iounit_state- State of /O UNIt oo 1128
3.27 jointtarget - JOiNt POSIION data.o v e 1129
3.28ligtitem - Listitem datastruCtureo 1131
329 10addata- Load data.o oot e 1132
3.30 loadidnum - Type of load identification. i 1137
3.31loadsession - Program 10ad SESSIONot 1138
3.32 mecunit - Mechanical UNnit e 1139
3.33 motsetdata- Motion settingsdata. 1141
3.34NUM - NUMENCVAIUBS. . . .ottt e e e e e e e ettt e et ettt 1146
3.350pcalC - ArthmEtiC OpPEralorottt e 1148
3.36 0pnUM - COMPANTSON OPEIAIOT . . . o ot ettt e e e e e e e e e e e e e e 1149
337 0rent - OFeNtalioNttt et 1150
3.38 paridnum - Type of parameter identification............. i 1154
3.39 paridvalidnum - Result of ParldRobValid 1156
3.40 pathrecid - Path recorder identifier. 1158
341 pos- Positions (ONly X, Y and Z). . ..o ot 1160
3.42 pose - Coordinate transformationSot 1162
3.43 progdisp - Program displacement. 1163
344 rawbytes- RaW daal.ot 1165
3.45 restartdata - Restart datafor trigg Signals. oo 1167
3.46 rmgheader - RAPID Message Queue Messageheader. 1171
3.47 rmgmessage - RAPID Message QUeUE MESSAgE . .« . oot v v vttt et e et et 1173
3.48 rmgdlot - Identity number of anRMQclient i 1174
3.49 robjoint - Joint position Of rObOt @XES. ot 1175
3.50robtarget - PoSition datat 1176
3.51 shapedata- World zoneshape data.t 1179
3.52 signalxx - Digital and analog SIgNalSot 1181
3.53 socketdev - SOCKEL DEVICE.\ttt e 1183
3.54 socketstatus - Socket commuNiCatioN SLaUS.o ettt 1184
355 gpeeddata- Spead data. 1185
3.56 stoppointdata- Stop point data.t 1189
B 7 SING - SHINGS o oottt e 1195
3.58 stringdig - String withonly digits. o 1197
3.59 switch - Optional ParamEterS oot 1198
3.60 symnum - Symbolic NUMDE. 1199
3.61 syncident - Identity for synchronization pointt 1200
3.62 System data - Current RAPID systemdatasettings. 1201
3.63taskid - Task identification.ot 1203
3.64 tasks - RAPID program tasks oottt et e e 1204
3.65testsignal - Test Signal . ..ot e 1206
3.66tooldata- TOOl data.o oottt 1207
3.67 tpnum - FlexPendant window number 1211
3.68 trapdata - Interrupt datafor current TRAP. 1212
3.69 triggdata - PoSItioning eVeNnts, trigg . « . . o« oottt 1213
3. 70 triggios - POSItiONINg @VENES, TG0 . « « . o v vt e e 1214
3.71 triggiosdnum - Positioning events, trigg.o vt oo 1217
3.72triggstrgo - PoSItioning eVeNntS, trigg . . .« oo ittt 1219
373 tUNELYPE - SEIVO tUNB YR . . o ottt e e 1222
3.74 vishownum - Instance ID for UIShOWo e e e 1223
3. 75 wobjdata- Work object datas.t 1224
3.76 wzstationary - Stationary world zonedata. 1228
3.77 wztemporary - Temporary world zonedata.ttt 1230

3HAC 16581-1 Revision: J

11

Table of Contents

3.78 Z0NE0ata - ZONB UAA . . . oottt e 1232
4 Programming type examples 1239
4.1 ERROR handler With movemMENtSo e e e e e e e 1239
4.2 Service routines with or without MoOVEMENtS.ot e 1242
4.3 System |/O interrupts with or withoutmovements i 1246
44 TRAP routineS With MOVEMENESottt e e e e et e e e 1250
Index 1255

12

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

Overview

Overview

About this manual

Thisisatechnical reference manual intended for the RAPID programmer. The RAPID base
instructions, functions and data types are detailed in this manual.

Usage
This manual should be read during programming and when you need specific information
about a RAPID instruction, function or data type.

Who should read this manual?
Thismanual isintended for someone with some previous experience in programming, for
example, arobot programmer.

Prerequisites
The reader should have some programming experience and have studied
» Operating manual - Introduction to RAPID
» Technical reference manual - RAPID overview

Organization of chapters
The manual is organized in the following chapters:

Chapter Contents

1. Instructions Detailed descriptions of all RAPID base
instructions, including examples of how to use
them.

2. Functions Detailed descriptions of all RAPID base
functions, including examples of how to use
them.

3. Data types Detailed descriptions of all RAPID base data

types, including examples of how to use them.

4. Programming type examples A general view of how to write program code
that contains different instructions/functions/
data types. The chapter contains also
programming tips and explanations.

References

Reference Document ID

Operating manual - Introduction to RAPID 3HAC029364-001

Technical reference manual - RAPID 3HAC16580-1
overview

Technical reference manual - RAPID kernel 3HAC16585-1

Continues on next page

3HAC 16581-1 Revision: J 13

Overview

Continued

Revisions

Revision
F

G

Description

7th edition. RobotWare 5.10.
New chapter added, 4 Programming type examples.
8th edition. RobotWare 5.11.

New instructions, functions and data types are added. Also a new
programming type example is added.

9th edition. RobotWare 5.12.

New instructions, functions and data types are added.

10th edition. RobotWare 5.13.

The following new instructions, functions and data types are added:

.

.

TPReadNum - Reads a number from the FlexPendant on page 564
Type - Get the data type name for a variable on page 1030
UIDnumEntry - User Number Entry on page 1038

UIDnumTune - User Number Tune on page 1044

triggiosdnum - Positioning events, trigg on page 1217

Updated safety signal graphics for the levels Danger and Warning.

14

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.1. AccSet - Reduces the acceleration
RobotWare - OS

1 Instructions

1.1. AccSet - Reduces the acceleration

Usage

aAccset isused when handling fragile loads. It allows slower acceleration and deceleration,
which results in smoother robot movements.

Thisinstruction can only be used in the main task T_roB1 or, if in aMultiMove system, in
Motion tasks.

Basic examples

Basic examples of the instruction accset areillustrated below.

Example 1
AccSet 50, 100;
The acceleration is limited to 50% of the normal value.
Example 2
AccSet 100, 50;
The acceleration ramp is limited to 50% of the normal value.
Arguments
AccSet Acc Ramp
Acc
Datatype: num
Acceleration and decel eration as a percentage of the normal values. 100% corresponds to
maximum accel eration. Maximum value: 100%. Input value < 20% gives 20% of maximum
accel eration.
Ramp

Datatype: num

Therate at which acceleration and decel eration increases as a percentage of the normal
values. Jerking can berestricted by reducing thisvalue. 100% corresponds to maximum rate.
Maximum value: 100%. Input value < 10% gives 10% of maximum rate.

Continues on next page

3HAC 16581-1 Revision: J 15

1 Instructions

1.1. AccSet - Reduces the acceleration

RobotWare - OS
Continued

The figures show that reducing the acceleration results in smoother movements.
Acceleration

Time
AccSet 100, 100, i.e. normal acceleration
Acceleration Acceleration
Time Time
AccSet 30, 100 AccSet 100, 30

xx0500002146

Program execution

The acceleration applies to both the robot and external axes until a new aAccset instruction
is executed.

The default values (100%) are automatically set
e atacold start.
¢ when anew program is loaded.

« when starting program execution from the beginning.

Syntax

Related information

AccSet

[Acc ':='] < expression (IN) of num > ','

[Ramp ':='] < expression (IN) of num > ';'
For information about See
Control acceleration in world coordinate WorldAccLim - Control acceleration in world
system coordinate system on page 707
Reduce TCP acceleration along the PathAccLim - Reduce TCP acceleration along the
path path on page 295
Positioning instructions Technical reference manual - RAPID overview

16

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.2. ActUnit - Activates a mechanical unit
RobotWare - OS

1.2. ActUnit - Activates a mechanical unit

Usage

ActUnit isused to activate a mechanical unit.

It can be used to determine which unit isto be active when, for example, common drive units
are used.

Thisinstruction can only be used inthemain task T roB1 or, if inaMultiMove system, in
Motion tasks.

Basic examples

A basic example of the instruction actunit isillustrated below.

Example 1
ActUnit orbit a;
Activation of the orbit a mechanica unit.
Arguments
ActUnit MechUnit
MechUnit

Mechanical Unit
Datatype: mecunit
The name of the mechanical unit that isto be activated.

Program execution

When the robots and external axes actual path is ready, the path on current path level is
cleared and the specified mechanical unit is activated. This means that it is controlled and
monitored by the robot.

If several mechanical units share acommon drive unit, activation of one of these mechanical
unitswill also connect that unit to the common drive unit.

Limitations

If thisinstruction is preceded by a move instruction, that move instruction must be
programmed with a stop point (zonedata £ine), not afly-by point, otherwise restart after
power failure will not be possible.

ActUnit cannot be executed in a RAPID routine connected to any of the following special
system events. PowerOn, Stop, QStop, Restart, Reset.or Step.

Itispossibleto use ActUnit - DeactUnit ON StorePath level, but the same mechanical
units must be active when doing RestoPath aswhen storePath was done. Such operation
on the Path Recorder and the path on the base level will be intact, but the path on the
StorePath level will be cleared.

Syntax

ActUnit

[MechUnit ':='] < variable (VAR) of mecunit> ';'

Continues on next page

3HAC 16581-1 Revision: J 17

1 Instructions

1.2. ActUnit - Activates a mechanical unit
RobotWare - OS
Continued

Related information

For information about

Deactivating mechanical units
Mechanical units

More examples

Path Recorder

See

DeactUnit - Deactivates a mechanical unit on page 79
mecunit - Mechanical unit on page 1139
DeactUnit - Deactivates a mechanical unit on page 79

PathRecMoveBwd - Move path recorder backwards on
page 298

18

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.3. Add - Adds a numeric value
RobotWare - OS

1.3. Add - Adds a numeric value

Usage

Add isused to add or subtract avalue to or from anumeric variable or persistent.

Basic examples

Basic examples of the instruction add areillustrated bel ow.

Example 1
Add regl, 3;
3 isadded to regi, i.e. regl:=regl+3.
Example 2
Add regl, -reg2;
The value of reg2 issubtracted from regi, i.e. regl:=regl-reg2.
Example 3
VAR dnum mydnum:=5;
Add mydnum, 500000000;
500000000 isadded to mydnum, i.e. mynum:=mynum-+500000000.
Example 4
VAR dnum mydnum:=5000;
VAR num mynum:=6000;
Add mynum, DnumToNum (mydnum \Integer) ;
5000 isadded to mynum, i.€. mynum: =mynum+5000. YOU have to use bnumToNum to get a
num NumMeric value that you can use together with the num variable mynum.
Arguments
Add Name | Dname AddValue | AddDvalue
Name
Datatype: num
The name of the variable or persistent to be changed.
Dname
Datatype: dnum
The name of the variable or persistent to be changed.
Addvalue
Datatype: num
The value to be added.
AddDvalue

Datatype: dnum
The value to be added.

Continues on next page

3HAC 16581-1 Revision: J 19

1 Instructions

1.3. Add - Adds a numeric value

RobotWare - OS
Continued

Limitations

If the valueto be added is of thetype dnum, and the variabl e/persi stent that should be changed
isanum, aruntime error will be generated. The combination of argumentsisnot possible (see
Example 4 above how to solve this).

Syntax

Add
[Name ':='] < var or pers (INOUT) of num >
| [Dname’ :='] < var or pers (INOUT) of dnum > ',’
[Addvalue ':='] < expression (IN) of num >
| [AddDvalue’ :='] < expression (IN) of dnum > ’;’

Related information

For information about

Incrementing a variable by 1
Decrementing a variable by 1

Changing data using an arbitrary
expression, e.g. multiplication

See

Incr - Increments by 1 on page 131
Decr - Decrements by 1 on page 81
":=" - Assigns a value on page 24

20

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.4. AliaslO - Define 1/O signal with alias name
RobotWare - OS

1.4. AliaslO - Define I/O signal with alias name

Usage

AliasIO isused to define asignal of any type with an alias name or to use signalsin built-
in task modules.

Signals with alias names can be used for predefined generic programs, without any
modification of the program before running in different robot installations.

TheinstructionaliasTo must berun beforeany use of the actual signal. See Basic examples
on page 21 for loaded modules, and More examples on page 22 for installed modul es.

Basic examples

Example 1

A basic example of theinstruction a1ias10 isillustrated below.
See also More examples on page 22.

VAR signaldo alias_do;
PROC prog_start ()
AliasIO config do, alias do;
ENDPROC
Theroutine prog_start isconnected to the START event in system parameters. The
program defining digital output signal alias_do isconnected to the configured digital
output signal config_do at program start.

Arguments

FromSignal

ToSignal

AliasIO FromSignal ToSignal

Datatype: signalxx Of string
L oaded modules:

Thesignal identifier named according to the configuration (datatype signalxx) fromwhich
the signal descriptor is copied. The signal must be defined in the I/O configuration.

Installed modules or loaded modules:

A reference (coNST, VAR or parameter of these) containing the name of the signal (datatype
string) from which the signal descriptor after search in the system is copied. The signal
must be defined in the 1/O configuration.

Datatype: signalxx

The signal identifier according to the program (data type signalxx) to which the signal
descriptor is copied. The signal must be declared in the RAPID program.

The same datatype must be used (or found) for the arguments FromSignal and ToSignal
and must be one of type signalxx (signalai, signalao, signaldi, signaldo,
signalgi, Of signalgo).

Continues on next page

3HAC 16581-1 Revision: J 21

1 Instructions

1.4. AliaslO - Define 1/O signal with alias name

RobotWare - OS
Continued

Program execution

The signal descriptor valueis copied from the signal given in argument FromSignal to the
signal given in argument ToSignal.

Error handling

Following recoverable errors can be generated. The errors can be handled in an error handler.
The system variable ErRrNO Will be set to:

ERR_ALIASIO DEF The FromSignal is not defined in the IO configuration
or the ToSignal is not declared in the RAPID program
or the ToSignal is defined in the IO configuration.

ERR_ALIASIO TYPE The data types for the arguments FromSignal and
ToSignal is not the same type.

More examples

Example 1

More examples of theinstruction a1ias10 areillustrated below.

VAR signaldi alias_di;
PROC prog_start ()
CONST string config string := "config di";
AliasIO config string, alias di;
ENDPROC
Theroutineprog_start isconnected to the START event in system parameters. The
program defined digital input signal alias_di isconnected to the configured digital input
signal config di (viaconstant config string) at program start.

Limitation

Syntax

When starting the program, the alias signal cannot be used until the AliasI0 instructionis
executed.

Instruction AliasTo must be placed
» either in the event routine executed at program start (event START)
e orinthe program part executed after every program start (before use of the signal)

In order to prevent mistakesit is not recommended to use dynamic reconnection of an
AliasTO signal to different physical signals.

AliasIO
[FromSignal ':='] < reference (REF) of anytype> ','

[ToSignal ':='] < variable (VAR) of anytype> ';'

Continues on next page

22

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.4. AliaslO - Define 1/O signal with alias name
RobotWare - OS
Continued

Related information

For information about See

Input/Output instructions Technical reference manual - RAPID overview
Input/Output functionality in general Technical reference manual - RAPID overview

Configuration of I/O Technical reference manual - System parameters
Defining event routines Technical reference manual - System parameters
Loaded/Installed task modules Technical reference manual - System parameters

3HAC 16581-1 Revision: J 23

1 Instructions

1.5. ":=" - Assigns a value

RobotWare - OS

1.5.":=" - Assigns a value

Usage

The* : =" instruction is used to assign anew value to data. Thisvalue can be anything from a
constant value to an arithmetic expression, e.g. reg1+5* reg3.

Basic examples

Basic examples of the instruction “ : =" areillustrated below.
See also More examples on page 24.

Example 1
regl := 5;
regl isassigned thevalue 5.
Example 2
regl := reg2 - reg3;
regl isassigned the value that the reg2-reg3 calculation returns.
Example 3
counter := counter + 1;
counter isincremented by one.
Arguments
Data := Value
Data
Datatype: a11
The datathat is to be assigned a new value.
Value

Datatype: Ssame as Data

The desired value.
More examples
More examples of theinstruction “ : =" areillustrated below.
Example 1
tooll.tframe.trans.x := tooll.tframe.trans.x + 20;
The TCPfor tool1 isshifted 20 mmin the X-direction.
Example 2
pallet{5,8} := Abs(value);
Anelementinthepallet matrix isassigned avalueequal to the absolute value of thevalue
variable.
Continues on next page
24 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.5. ":=" - Assigns a value
RobotWare - OS
Continued
Limitations
The data (whose value is to be changed) must not be
e aconstant
* anon-vaue datatype.
The data and value must have similar (the same or aias) data types.
Syntax
(EBNF)
<assignment targets ':=' <expression> ';'
<assignment targets> ::=
<variables>
| <persistents
| <parameters
| <VAR>
Related information
For information about See
Expressions Technical reference manual - RAPID overview
Non-value data types Technical reference manual - RAPID overview
Assigning an initial value to data Operating manual - IRC5 with FlexPendant

3HAC 16581-1 Revision: J

25

1 Instructions

1.6. BitClear - Clear a specified bit in a byte data

RobotWare - OS

1.6. BitClear - Clear a specified bit in a byte data

Usage

BitClear isused to clear (set to 0) a specified bit in adefined byte data.

Basic examples

A basic example of theinstruction Bitclear isillustrated below.

Example 1
CONST num parity bit := 8;
VAR byte datal := 130;
BitClear datal, parity bit;
Bit number 8 (parity_bit) inthevariabledata1 will besetto 0, e.g. the content of the variable
data1 will be changed from 130 to 2 (integer representation). Bit manipulation of datatype
byte when using Bitclear isillustrated in the figure below.
© - © -
8 3 8 3
L - & & e
@ o @ @
110{0[{0{0 [0 |10 comm——— ofofo|o|o|o|1]0O
A T
Bit position 8 has value 1. Bit position 8 is set to 0.
VAR byte datal := 130; BitClear datal, parity bit;
Content of datal before BitClear... : 130 Content of datal after BitClear... : 2
xx0500002147
Arguments
BitClear BitData BitPos
BitData
Datatype: byte
The bit data, in integer representation, to be changed.
BitPos
Bit Position
Datatype: num
The bit position (1-8) in the BitData to be set to 0.
Limitations
Therange for adatatypebyte is0 - 255 decimal.
The bit positionisvalid from 1 - 8.
Continues on next page
26 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.6. BitClear - Clear a specified bit in a byte data
RobotWare - OS

Continued
Syntax
BitClear
[BitData ':='] < var or pers (INOUT) of byte > ',!'
[BitPos ':='] < expression (IN) of num > ';'
Related information
For information about See
Set a specified bit in a byte data BitSet - Set a specified bit in a byte data on page

28

Check if a specified bit in a byte data is set BitCheck - Check if a specified bit in a byte data
is set on page 772

Other bit functions Technical reference manual - RAPID overview

3HAC 16581-1 Revision: J 27

1 Instructions

1.7. BitSet - Set a specified bit in a byte data

RobotWare - OS

1.7. BitSet - Set a specified bit in a byte data

Usage

BitSet isused to set a specified bit to 1 in a defined byte data.

Basic examples

A basic example of theinstruction Bitset isillustrated below.

Example 1
CONST num parity bit := 8;
VAR byte datal := 2;
BitSet datal, parity bit;
Bit number 8 (parity bit) inthevariable data1 will besetto 1, e.g. the content of the
variable data1 will be changed from 2 to 130 (integer representation). Bit manipulation of
datatype byte when using Bitset isillustrated in the figure below.
© — © -~
8 8 8 8
L o------mmmomoo e TR &
@ @ @ @
0(0]|0|0|0 [0 [1|0| cm—m—- | 1|0|0|0|0|0|1]|0
A A
Bit position 8 has value 0. Bit position 8 is set to 1.
VAR byte datal := 2; BitSet datal, parity bit;
Content of datal before BitSet... : 2 Content of data1 after BitSet... : 130
xx0500002148
Arguments
BitSet BitData BitPos
BitData
Datatype: byte
The bit data, in integer representation, to be changed.
BitPos
Bit Position
Datatype: num
The bit position (1-8) intheBitData to be setto 1.
Limitations
Therange for adatatypebyte isinteger O - 255.
The bit positionisvalid from 1 - 8.
Continues on next page
28 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.7. BitSet - Set a specified bit in a byte data
RobotWare - OS

Continued
Syntax
BitSet
[BitData':='] < var or pers (INOUT) of byte > ', '
[BitPos':='] < expression (IN) of num > ';'
Related information
For information about See
Clear a specified bit in a byte data BitClear - Clear a specified bit in a byte data

on page 26

Check if a specified bit in a byte data is set ~ BitCheck - Check if a specified bit in a byte
data is set on page 772

Other bit functions Technical reference manual - RAPID
overview

3HAC 16581-1 Revision: J 29

1 Instructions

1.8. BookErrNo - Book a RAPID system error number

RobotWare - OS

1.8. BookErrNo - Book a RAPID system error number

Usage

BookErrNo IS used to book anew RAPID system error number.

Basic examples

Example 1

A basic example of theinstruction BookErrNo isillustrated below.

! Introduce a new error number in a glue system

! Note: The new error variable must be declared with the initial
value -1

VAR errnum ERR GLUEFLOW := -1;

! Book the new RAPID system error number

BookErrNo ERR_GLUEFLOW;
Thevariable ERrR_GLUEFLOW Will be assigned to a free system error number for use in the
RAPID code.

! Use the new error number
IF dil = 0 THEN

RAISE ERR_GLUEFLOW;
ELSE

ENDIF

! Error handling
ERROR
IF ERRNO = ERR GLUEFLOW THEN

ELSE

ENDIF
If thedigital inputdiiis o, the new booked error number will be raised and the system error
variable ErRrNO Will be set to the new booked error number. The error handling of those user
generated errors can then be handled in the error handler as usual.

Arguments

ErrorName

BookErrNo ErrorName

Datatype: errnum
The new RAPID system error variable name.

Limitations

The new error variable must not be declared as aroutine variable.

The new error variable must be declared with aninitial value of -1, that givestheinformation
that this error should be a RAPID system error.

Continues on next page

30

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.8. BookErrNo - Book a RAPID system error number
RobotWare - OS

Continued
Syntax
BookErrNo
[ErrorName ':='] < variable (VAR) of errnum > ';'

Related information

For information about See

Error handling Technical reference manual - RAPID overview

Error number errnum - Error number on page 1108

Call an error handler RAISE - Calls an error handler on page 334

3HAC 16581-1 Revision: J 31

1 Instructions

1.9. Break - Break program execution

RobotWare - OS

1.9. Break - Break program execution

Usage

Break IS used to make an immediate break in program execution for RAPID program code
debugging purposes. The robot movement is stopped at once.

Basic examples

Example 1

A basic example of theinstruction Break isillustrated below.

Break;

Program execution stops and it is possible to analyze variables, values etc. for debugging
purposes.

Program execution

Theinstruction stops program execution at once, without waiting for the robot and external
axes to reach their programmed destination points for the movement being performed at the
time. Program execution can then be restarted from the next instruction.

If thereisaBreak instruction in some routine event, the execution of the routine will be
interrupted and no STOP routine event will be executed. The routine event will be executed
from the beginning the next time the same event occurs.

Syntax
Break';'

Related information
For information about See
Stopping for program actions Stop - Stops program execution on page 510
Stopping after a fatal error EXIT - Terminates program execution on page 105
Terminating program execution EXIT - Terminates program execution on page 105
Only stopping robot movements StopMove - Stops robot movement on page 515

32

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.10. CallByVar - Call a procedure by a variable
RobotWare - OS

1.10. CallByVar - Call a procedure by a variable

Usage

callByvar (Call By Variable) can be used to call procedures with specific names, e.g.

proc_namel, proc _name2, proc name3 ... proc_namex Viaavariable.

Basic examples

Example 1

Arguments

Name

Number

A basic example of the instruction cal1Byvar isillustrated below.
See also More examples on page 33.

regl := 2;
CallByVar "proc", regl;
The procedure proc2 is called.

CallByVar Name Number

Datatype: string
Thefirst part of the procedure name, €.9. proc_name.

Datatype: num

The numeric value for the number of the procedure. This value will be converted to a string
and gives the 2nd part of the procedure name, e.g. 1. The value must be a positive integer.

More examples

More examples of how to make static and dynamic selection of procedure call.

Example 1 - Static selection of procedure call

TEST regl
CASE 1:
1f door door_ loc;
CASE 2:
rf door door loc;
CASE 3:
lr_door door_loc;
CASE 4:
rr door door loc;
DEFAULT:
EXIT;
ENDTEST
Depending on whether the value of register reg1 is1, 2, 3, or 4, different procedures are
called that perform the appropriate type of work for the selected door. The door location in
argument door loc.

Continues on next page

3HAC 16581-1 Revision: J 33

1 Instructions

1.10. CallByVar - Call a procedure by a variable
RobotWare - OS
Continued

Example 2 - Dynamic selection of procedure call with RAPID syntax
regl := 2;
% "proc"+NumToStr (regl, 0)% door loc;

The procedure proc2 is called with argument door 1loc.
Limitation: All procedures must have a specific nameeg. procl, proc2, proc3.

Example 3 - Dynamic selection of procedure call with CallByVar
regl := 2;
CallByVar "proc",regl;
The procedure proc2 iscalled.

Limitation: All procedures must have specific name, e.g. proc1, proc2, proc3, and no
arguments can be used.

Limitations
Can only be used to call procedures without parameters.

Can not be used to call LOCAL procedures.
Execution of cal1Byvar takes alittle more time than execution of anormal procedure call.

Error handling
In the argument Number iS< 0 or is not an integer, the system variable ERRNO is set to
ERR_ARGVALERR.
In reference to an unknown procedure, the system variable ERRNO is set to
ERR_REFUNKPRC.
In procedure call error (not procedure), the system variable ERRNO is set to
ERR_CALLPROC.

These errors can be handled in the error handler.

Syntax
CallByVar
[Name ':='] <expression (IN) of strings>','
[Number ':='] <expression (IN) of num>';'

Related information

For information about See

Calling procedures Technical reference manual - RAPID overview
Operating manual - IRC5 with FlexPendant

34 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.11. CancelLoad - Cancel loading of a module
RobotWare - OS

1.11. CancelLoad - Cancel loading of a module

Usage

CancelLoad can be used to cancel the loading operation generated from the instruction
StartLoad.

CancelLoad can only be used between the instruction startLoad and WwaitLoad.

Basic examples

A basic example of the instruction cancelLoad isillustrated below.

See also More examples on page 35.

Examplel
CancelLoad loadl;
The load session 1oad1 is cancelled.
Arguments
CancellLoad LoadNo
LoadNo

Datatype: loadsession
Reference to the load session, created by the instruction startLoad.

More examples

Example 1

More examples of how to use the instruction cancelLoad areillustrated below.

VAR loadsession loadl;
StartLoad "HOME:"\File::"PART_B.MOD",loadl;

IF ...

Cancelload loadl;

StartLoad "HOME:"\File:="PART_C.MOD",1oad1;
ENDIF

WaitLoad loadl;
Theinstruction cancelload will cancel the on-going loading of the module PART B.MOD
and instead make it possible to load pART ¢ .MOD.

Error handling

If the variable specified in argument LoadNo isnotin use, meaning that no load sessionisin
use, the system variable ERRNO is set to ERR_LOADNO_NOUSE. This error can then be
handled in the error handler.

Limitation

CancelLoad canonly be used in the sequence after that instruction startLoad isready and
before instruction waitLoad is started.

Continues on next page

3HAC 16581-1 Revision: J 35

1 Instructions

1.11. CancelLoad - Cancel loading of a module

RobotWare - OS
Continued

Syntax

Related information

CancelLoad

[LoadNo ':='] < variable (VAR) of loadsession >';'

For information about

Load a program module during
execution
Connect the loaded module to the task

Load session
Load a program module

Unload a program module

Check program references

See
StartLoad - Load a program module during
execution on page 482

WaitLoad - Connect the loaded module to the task
on page 682

loadsession - Program load session on page 1138

Load - Load a program module during execution on
page 208

UnLoad - UnLoad a program module during
execution on page 655

CheckProgRef - Check program references on
page 37

36

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.12. CheckProgRef - Check program references
RobotWare - OS

1.12. CheckProgRef - Check program references

Usage

CheckProgRef isused to check for unresolved references at any time during execution.

Basic examples

Example 1

A basic example of theinstruction checkProgref isillustrated bel ow.

Load \Dynamic, diskhome \File:="PART B.MOD" \CheckRef;

Unload "PART A.MOD";

CheckProgRef;
In this casethe program containsamodule called PART A .MOD. A new module PART B.MOD
isloaded, which checksif all references are OK. Then pART A.MOD is unloaded. To check
for unresolved references after unload, acall to checkProgRef isdone.

Program execution

Program execution forces a new link of the program task and checks for unresolved
references.

If an error occurs during checkProgRe £, the program is not affected, it just tells you that an
unresolved reference existsin the program task. Therefore, use checkProgRref immediately
after changing the number of modulesin the program task (loading or unloading) to be able
to know which module caused the link error.

Thisinstruction can also be used as a substitute for using the optional argument \ CheckRref
ininstruction Load or WwaitLoad.

Error handling

If the program task contains unresolved references, the system variable ERRNO will be set
to ERR_LINKREF, which can be handled in the error handler.

Syntax
CheckProgRef ' ;'
Related information
For information about See
Load of a program module Load - Load a program module during
execution on page 208
Unload of a program module UnLoad - UnLoad a program module during
execution on page 655
Start loading of a program module StartLoad - Load a program module during
execution on page 482
Finish loading of a program module WaitLoad - Connect the loaded module to the

task on page 682

3HAC 16581-1 Revision: J 37

1 Instructions

1.13. CirPathMode - Tool reorientation during circle path

RobotWare - OS

1.13. CirPathMode - Tool reorientation during circle path

Usage

cirpathMode (Circle Path Mode) makesit possible to select different modesto reorientate
the tool during circular movements.

Thisinstruction can only be used in the main task T_roOB1 or, if in aMultiMove system in
Motion tasks.

Basic examples

Example 1

Example 2

Example 3

Example 4

Example 5

Example 6

Basic examples of the instruction cirrPathMode areillustrated below.

CirPathMode \PathFrame;
Standard mode for tool reorientation in the actual path frame from the start point to the
ToPoint during all succeeding circular movements. Thisis default in the system.

CirPathMode \ObjectFrame;
Modified mode for tool reorientation in actual object frame from the start point to the
ToPoint during al succeeding circular movements.

CirPathMode \CirPointOri;
Modified mode for tool reorientation from the start point viathe programmed cirpPoint
orientation to the Toroint during all succeeding circular movements.

CirPathMode \Wrist45;
Modified mode such that the projection of the tool’s z-axis onto the cut plane will follow the
programmed circle segment. Only wrist axes4 and 5 are used. Thismode should only be used
for thin objects.

CirPathMode \Wrist46;
Modified mode such that the projection of the tool’s z-axis onto the cut plane will follow the
programmed circle segment. Only wrist axes4 and 6 are used. Thismode should only be used
for thin objects.

CirPathMode \Wrist56;
Modified mode such that the projection of the tool’s z-axis onto the cut plane will follow the
programmed circle segment. Only wrist axes 5 and 6 are used. Thismode should only be used
for thin objects.

Continues on next page

38

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.13. CirPathMode - Tool reorientation during circle path
RobotWare - OS
Continued

Description

PathFrame
The figure in the table shows the tool reorientation for the standard mode \ PathFrame.

Illustration Description

The arrows shows the tool from wrist center
point to tool center point for the programmed
points. The path for the wrist center point is
dotted in the figure.

The \PathFrame mode makes it easy to get
the same angle of the tool around the
cylinder. The robot wrist will not go through
the programmed orientation in the
CirPoint

xx0500002152

The figure in the table shows the use of standard mode \ PathFrame with fixed tool orienta-
tion.

Illustration Description

This picture shows the obtained orientation of the
tool in the middle of the circle using a leaning tool
and \PathFrame mode.
Compare with the figure below when

l \ObjectFrame mode is used.

xx0500002153

Continues on next page

3HAC 16581-1 Revision: J 39

1 Instructions

1.13. CirPathMode - Tool reorientation during circle path
RobotWare - OS
Continued

ObjectFrame
The figure in the table shows the use of modified mode \0bjectFrame with fixed tool ori-
entation.
lllustration Description

This picture shows the obtained orientation of the
tool in the middle of the circle using a leaning tool
and \ObjectFrame mode.

l This mode will make a linear reorientation of the
Y A 4

tool in the same way as for MoveL. The robot wrist
will not go through the programmed orientation in
I | the CirPoint.

Compare with the figure above when
\PathFrame mode is used.

xx0500002151

CirPointOri

The figure in the table shows the different tool reorientation between the standard mode
\PathFrame and the modified mode \CirPointOri.

lllustration Description

The arrows show the tool from wrist center point
to tool center point for the programmed points.
The different paths for the wrist center point are
dashed in the figure.

The \CirPointOri mode will make the robot
wrist to go through the programmed orientation
inthe CirPoint.

- = = \ Pathframe

........ \CirPointOri

xx0500002150

Wrist45 / Wrist46 / Wrist56
The figure in the table shows the frames involved when cutting a shape using axes 4 and 5..

lllustration Description

It is assumed that the cutting beam is aligned
& Tool with the tool’s z axis. The coordinate frame of the

cut plane is defined by the robot’s starting

position when executing the MoveC instruction.

X z
X Shape \\
/') x,y)
Cut plane
vZ

xx0800000294

Continues on next page
40 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.13. CirPathMode - Tool reorientation during circle path
RobotWare - OS
Continued

Arguments

[\PathFrame]

[\ObjectFrame]

[\CirPointOri]

[\Wrist45 1]

[\Wrist46]

[\Wrist56 1

CirPathMode [\PathFrame] | [\ObjectFrame] | [\CirPointOri] |
[\Wrist45] | [\Wrist46] | [\Wrist56]

Datatype: switch

During the circular movement the reorientation of thetool is done continuously from the start
point orientation to the Topoint orientation in the actual path frame. Thisis the standard
mode in the system.

Datatype: switch

During the circular movement the reorientation of thetool is done continuously from the start
point orientation to the Toroint orientation in the actual object frame.

Datatype: switch

During the circular movement the reorientation of thetool is done continuously from the start
point orientation to the programmed cirPoint orientation and further to the ToPoint
orientation.

Datatype: switch

The robot will move axes 4 and 5 such that the projection of thetool’s z-axis onto the cut
plane will follow the programmed circle segment. This mode should only be used for thin
objectsasonly 2 wrist axes are used and thus give usincreased accuracy but also less control.

NOTE: This switch requires option Wrist Move.

Datatype: switch

The robot will move axes 4 and 6 such that the projection of the tool’s z-axis onto the cut
plane will follow the programmed circle segment. This mode should only be used for thin
objectsasonly 2 wrist axes are used and thus give usincreased accuracy but also less control.

NOTE: This switch requires option Wrist Move.

Datatype: switch

The robot will move axes 5 and 6 such that the projection of the tool’s z-axis onto the cut
plane will follow the programmed circle segment. This mode should only be used for thin
objectsasonly 2 wrist axes are used and thus give usincreased accuracy but also less control.

NOTE: This switch requires option Wrist Move.

If you use cirpathMode without any switch then result isthe same as CirPointMode
\PathFrame

Continues on next page

3HAC 16581-1 Revision: J 41

1 Instructions

1.13. CirPathMode - Tool reorientation during circle path

RobotWare - OS
Continued

Program execution

The specified circular tool reorientation mode applies for the next executed robot circular
movements of any type (MoveC , SearchC, TriggC, MoveCDO, MoveCSync, ArcC,
PaintC...) andisvaiduntil anew cirrathMode (or obsolete cirpPathReori) instruction
is executed.

The standard circular reorientation mode (CirPathMode \PathFrame) isautomatically set
e Atacold start-up.
* When anew program is loaded.

» When starting program execution from the beginning.

Limitations

Syntax

Theinstruction only affects circular movements.

When using the \cirPointori mode, the cirPoint must be between the points A and B
according to the figure below to make the circle movement to go through the programmed
orientation inthe cirpoint.

A 14 14 B
1/4

CirPoint

xx0500002149

\Wrist45, \Wrist46, and \Wrist56 mode should only be used for cutting thin objects as
the ability to control the angle of thetool islost when using only two wrist axes. Coordinated
movements are not possible since the main axisislocked.

If working in wrist singularity areaand theinstruction singarea\wrist hasbeen executed,
the instruction cirpathMode has no effect because the system then selects another tool
reorientation mode for circular movements (joint interpolation).

Thisinstruction replacesthe old instruction cirpathReori (Will work evenin the future but
will not be documented any more).

CirPathMode

['\'PathFrame] | ['\'ObjectFrame] | ['\'CirPointOri] |
["\'Wrist45] | ['\'Wrist46] | ['\'Wrist56] ';'

Related information

For information about See

Interpolation Technical reference manual - RAPID overview
Motion settings data motsetdata - Motion settings data on page 1141
Circular move instruction MoveC - Moves the robot circularly on page 236

Wrist movements Application manual - Motion Performance,
section Wrist Move

42

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.14. Clear - Clears the value

Usage

1.14. Clear - Clears the value
RobotWare - OS

Clear isused to clear anumeric variable or persistent , i.e. setitto 0.

Basic examples

Basic examples of theinstruction clear areillustrated below.

Example 1
Clear regl;
Regl iscleared, i.e. regl:=0.
Example 2
CVAR dnum mydnum:=5;
Clear mydnum;
mydnum IS cleared, i.€. mydnum: =0.
Arguments
Clear Name Dname
Name
Datatype: num
The name of the variable or persistent to be cleared.
Dname
Datatype: dnum
The name of the variable or persistent to be cleared.
Syntax
Clear
[Name ':='] < var or pers (INOUT) of num >
| [Dname ':='] < var or pers (INOUT) of dnum > ';'
Related information
For information about See
Incrementing a variable by 1 Incr - Increments by 1 on page 131
Decrementing a variable by 1 Decr - Decrements by 1 on page 81
Adding any value to a variable Add - Adds a numeric value on page 19
Changing data using arbitrary ":=" - Assigns a value on page 24

3HAC 16581-1 Revision: J

43

1 Instructions

1.15. ClearlOBuff - Clear input buffer of a serial channel
RobotWare - OS

1.15. ClearlOBuff - Clear input buffer of a serial channel

Usage
clear1oBuff (Clear 1/O Buffer) is used to clear the input buffer of aserial channel. All
buffered characters from the input serial channel are discarded.

Basic examples
A basic example of theinstruction cleartoBuff isillustrated below.

Example 1
VAR iodev channel2;

Open "com2:", channel2 \Bin;

ClearIOBuff channel2;

WaitTime 0.1;
Theinput buffer for the serial channel referred to by channel2 is cleared. The wait time
guarantees the clear operation enough time to finish.

Arguments
ClearIOBuff IODevice

IODevice

Datatype: iodev
The name (reference) of the serial channel whose input buffer isto be cleared.

Program execution
All buffered charactersfrom theinput serial channel are discarded. Next read instructionswill
wait for new input from the channel.

Limitations
Thisinstruction can only be used for serial channels. Do not wait for acknowledgement of the
operation to finish. Allow await time 0.1 after the instruction is recommended to give the
operation enough time in every application.

Error handling
If trying to use the instruction on afile, the system variable ERRNO iS set t0 ERR_FILEACC.
This error can then be handled in the error handler.

Syntax
ClearIOBuff
[IODevice ':='] <variable (VAR) of iodev>';'
Related information
For information about See
Opening a serial channel Technical reference manual - RAPID overview

44 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.16. ClearPath - Clear current path
Robot Ware - OS

1.16. ClearPath - Clear current path

Usage

Clearpath (Clear Path) clearsthewhole motion path on the current motion path level (base
level or storeprath level).

With motion path, meaning all the movement segments from any move instructions which
have been executed in RAPID but not performed by the robot at the execution time of
ClearPath.

The robot must bein a stop point position or must be stopped with stopMove before the
instruction clearpath can be executed.

Basic examples

Example 1

Basic examples of the instruction clearpath areillustrated below.

Start point home Movel p1, v500, fine, gripper; End pointp 7

s
pX

The robot drops its payload here and
execution continues in the trap routine

xx0500002154

In the following program example, the robot moves from the position home to the position
pl. At the point px the signal di1 will indicate that the payload has been dropped. The
execution continuesin thetrap routine gohome. Therobot will stop moving (start the braking)
at px, the path will be cleared, the robot will move to position home. The error will be raised
up to the calling routine minicycle and the whole user defined program cycle proc1
proc2 Will be executed from the beginning one more time.

VAR intnum drop payload;
VAR errnum ERR DROP LOAD := -1;

PROC minicycle ()
BookErrNo ERR_DROP_LOAD;
procl;
ERROR (ERR DROP_LOAD)
RETRY;
ENDPROC
PROC procl ()

proc2;

ENDPROC

Continues on next page

3HAC 16581-1 Revision: J 45

1 Instructions

1.16. ClearPath - Clear current path
Robot Ware - OS
Continued

PROC proc2 ()
CONNECT drop payload WITH gohome;
ISignalDI \Single, dil, 1,

v500,

drop_payload;

Movel pl, fine, gripper;

IDelete drop_ payload
ENDPROC

TRAP gohome
StopMove \Quick;
ClearPath;
IDelete drop_ payload;
StorePath;
MoveL home,
RestoPath;
RAISE ERR_DROP_LOAD;
ERROR

RAISE;
ENDTRAP

v500, fine, gripper;

If the same program isbeing run but without stopMove and ClearPath in thetrap routine
gohome, the robot will continue to position p1 before going back to position home.

If programming MoveL home With flying-point (zone) instead of stop-point (fine), the
movement is going on during the RATSE to the error handler in procedure minicycle and

further until the movement is ready.

Limitations

Limitation examples of theinstruction clearpath areillustrated below.

Example 1 - Limitation

VAR intnum int move stop;

PROC test move_ stop ()
CONNECT int move stop WITH trap move_ stop;
ISignalDI dil, 1,
v200,
v200,

int move stop;
z20,
z20,

Moved plo0, gripper;

MoveL p20, gripper;

ENDPROC

TRAP trap_move_stop
StopMove;
ClearPath;
StartMove;
StorePath;
Moved pl0, v200, z20, gripper;

RestoPath;

ENDTRAP

Continues on next page

46

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.16. ClearPath - Clear current path
Robot Ware - OS
Continued

Thisisan example of clearpath limitation. During the robot movement to p10 and p2o0,
the ongoing movement is stopped and the motion path is cleared, but no action is done to
break off the active instruction MoveJ p10 Or MovelL p20inthe PROC test move stop.
So the ongoing movement will be interrupted and the robot will go to p10 in the TRAP
trap_move_stop, but no further movement top10 or p20 inthe PROC test move stop
will be done. The program execution will be hanging.

This problem can be solved with either error recovery with long jump as described in example
2 below or with asynchronously raised error with instruction ProcerrRecovery.

Example 2 - No limitations

VAR intnum int move_ stop;

VAR errnum err move_ stop := -1;

PROC test move_ stop()
BookErrNo err move stop;
CONNECT int move stop WITH trap move stop;
ISignalDI dil, 1, int_move_stop;
Moved pl0, v200, z20, gripper;
MovelL p20, v200, z20, gripper;
ERROR (err move stop)
StopMove;
ClearPath;
StartMove;
StorePath;
Moved pl0, v200, z20, gripper;
RestoPath;
RETRY;
ENDPROC

TRAP trap move_ stop
RAISE err move_ stop;
ERROR
RAISE;
ENDTRAP
Thisis an example of how to use error recovery with long jump together with clearrath
without any limitation. During the robot movement top10 and p20, the ongoing movement
isstopped. The motion path is cleared, and because of error recovery through execution level
boundaries, break off is done of the active instruction Moved p10 or MoveL p20. Sothe
ongoing movement will be interrupted and the robot will goto p10 inthe ERROR handler,
and once more execute the interrupted instruction MoveJd p10 Or MoveL p20 inthe PROC

test_move_ stop.

Syntax

ClearPath ';'

Continues on next page

3HAC 16581-1 Revision: J 47

1 Instructions

1.16. ClearPath - Clear current path

Robot Ware - OS
Continued

Related information

For information about

Stop robot movements
Error recovery

Asynchronously raised error

See

StopMove - Stops robot movement on page 515

Technical reference manual - RAPID overview
Technical reference manual - RAPID kernel

ProcerrRecovery - Generate and recover from process-move
error on page 325

48

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.17. ClearRawBytes - Clear the contents of rawbytes data
RobotWare - OS

1.17. ClearRawBytes - Clear the contents of rawbytes data

Usage

ClearRawBytes isused to set al the contents of a rawbytes variableto 0.

Basic examples

A basic example of theinstruction isillustrated below.

Example 1
VAR rawbytes raw _data;
VAR num integer := 8
VAR num float := 13.4;
PackRawBytes integer, raw data, 1 \IntX := DINT;
PackRawBytes float, raw data, (RawBytesLen(raw data)+1l) \Float4;
ClearRawBytes raw_data \FromIndex := 5;
In the first 4 bytesthe value of integer isplaced (from index 1) and in the next 4 bytes
starting from index 5 the value of f1oat.
The last instruction in the example clears the contents of raw_data, starting at index 5, i.e.
float Will becleared, but integer iskeptin raw_data. Current length of valid bytesin
raw data iSsetto4.
Arguments
ClearRawBytes RawData [\FromIndex]
RawData
Datatype: rawbytes
RawData iSthe data container which will be cleared.
[\FromIndex]

Datatype: num

With \ FromIndex it isspecified whereto start clearing the contentsof Rawbata. Everything
is cleared to the end.

If \FromIndex isnot specified, all data starting at index 1 is cleared.

Program execution

Data from index 1 (default) or from \ FromIndex inthe specified variable isreset to 0.

The current length of valid bytes in the specified variableis set to O (default) or to
(FromIndex - 1) if \FromIndex isprogrammed.

Syntax

ClearRawBytes
[RawData ':='] < variable (VAR) of rawbytes>
['\'FromIndex ':=' <expression (IN) of num>]';"'

Continues on next page

3HAC 16581-1 Revision: J 49

1 Instructions

1.17. ClearRawBytes - Clear the contents of rawbytes data

RobotWare - OS
Continued

Related information

For information about

rawbytes data
Get the length of rawbytes data

Copy the contents of rawbytes data
Pack DeviceNet header into rawbytes
data

Pack data into rawbytes data

Write rawbytes data

Read rawbytes data

Unpack data from rawbytes data

See

rawbytes - Raw data on page 1165

RawBytesLen - Get the length of rawbytes data
on page 940

CopyRawBytes - Copy the contents of rawbytes
data on page 67

PackDNHeader - Pack DeviceNet Header into
rawbytes data on page 287

PackRawBytes - Pack data into rawbytes data on
page 290

WriteRawBytes - Write rawbytes data on page
725

ReadRawBytes - Read rawbytes data on page
352

UnpackRawBytes - Unpack data from rawbytes
data on page 658

50

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.18. ClIkReset - Resets a clock used for timing
RobotWare - OS

1.18. ClkReset - Resets a clock used for timing

Usage
ClkReset isused to reset aclock that functions as a stop-watch used for timing.
Thisinstruction can be used before using a clock to make surethat it is set to 0.

Basic examples
A basic example of theinstruction c1kreset isillustrated below.

Example 1
ClkReset clockl;
Theclock clockl isreset.
Arguments
ClkReset Clock
Clock

Datatype: clock

The name of the clock to reset.

Program execution
When aclock isreset, it isset to 0.

If aclock isrunning it will be stopped and then reset.

Syntax
ClkReset
[Clock ':='"] < variable (VAR) of clock > ';'
Related Information
For information about See
Other clock instructions Technical reference manual - RAPID overview

3HAC 16581-1 Revision: J 51

1 Instructions

1.19. ClkStart - Starts a clock used for timing

RobotWare - OS

1.19. ClkStart - Starts a clock used for timing

Usage

Clkstart isused to start aclock that functions as a stop-watch used for timing.

Basic examples

A basic example of theinstruction clkstart isillustrated below.

Example 1
ClkStart clockl;
The clock clockl is started.
Arguments
ClkStart Clock
Clock

Datatype: clock

The name of the clock to start.

Program execution

More examples

Example 1

When aclock is started, it will run and continue counting seconds until it is stopped.

A clock continuesto run when the program that started it is stopped. However, the event that
you intended to time may no longer be valid. For example, if the program was measuring the
waiting time for an input, the input may have been received while the program was stopped.
In this case, the program will not be able to “see” the event that occurred while the program
was stopped.

A clock continues to run when the robot is powered down as long as the battery back-up
retains the program that contains the clock variable.

If aclock isrunning it can be read, stopped, or reset.

More examples of theinstruction c1kstart areillustrated below.

VAR clock clock2;

VAR num time;

ClkReset clock2;
ClkStart clock2;
WaitUntil dil = 1;
ClkStop clock2;
time:=ClkRead (clock2) ;
The waiting time for di1 to become 1 is measured.

Continues on next page

52

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.19. ClkStart - Starts a clock used for timing

RobotWare - OS
Continued

Error handling

If the clock runsfor 4,294,967 seconds (49 days 17 hours 2 minutes 47 seconds) it becomes

overflowed and the system variable ERRNO iS Set t0 ERR_OVERFLOW.

The error can be handled in the error handler.

Syntax
ClkStart
[Clock ':='"] < variable (VAR) of clock >';'
Related Information
For information about See
Other clock instructions Technical reference manual - RAPID overview

3HAC 16581-1 Revision: J

53

1 Instructions

1.20. CIkStop - Stops a clock used for timing

RobotWare - OS

1.20. ClkStop - Stops a clock used for timing

Usage

Clkstop isused to stop aclock that functions as a stop-watch used for timing.

Basic examples

A basic example of theinstruction c1kstop isillustrated below.

ClkStop clockl;
The clock clock1 is stopped.

Arguments

Clock

ClkStop Clock

Datatype: clock

The name of the clock to stop.

Program execution

Error handling

When a clock is stopped, it will stop running.
If aclock is stopped, it can be read, started again, or reset.

If the clock runsfor 4,294,967 seconds (49 days 17 hours 2 minutes 47 seconds) it becomes
overflowed and the system variable ERRNO is set to ERR_OVERFLOW.

The error can be handled in the error handler.

Syntax
ClkStop
[Clock ':='] < variable (VAR) of clock >';'"
Related Information
For information about See
Other clock instructions Technical reference manual - RAPID overview
More examples ClkStart - Starts a clock used for timing on page 52

54

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.21. Close - Closes a file or serial channel
RobotWare - OS

1.21. Close - Closes a file or serial channel

Usage
Close isused to close afile or seria channel.

Basic examples
A basic example of theinstruction close isillustrated below.

Example 1
Close channel2;
The serial channel referred to by channel2 isclosed.
Arguments
Close IODevice
IODevice

Datatype: iodev

The name (reference) of the file or serial channel to be closed.

Program execution
The specified file or seria channel isclosed and must be re-opened before reading or writing.
If it isaready closed the instruction isignored.

Syntax
Close
[IODevice ':='] <variable (VAR) of iodev>';'
Related information
For information about See
Opening a file or serial channel Technical reference manual - RAPID overview

3HAC 16581-1 Revision: J 55

1 Instructions

1.22. CloseDir - Close a directory

RobotWare - OS

1.22. CloseDir - Close a directory

Usage

CloseDir isused to close adirectory in balance with openDir.

Basic examples

Example 1

A basic example of theinstruction closeDir isillustrated below.

PROC lsdir (string dirname)

VAR dir directory;
VAR string filename;

OpenDir directory,

dirname;

WHILE ReadDir (directory, filename) DO

TPWrite filename;

ENDWHILE

CloseDir directory;

ENDPROC

This example prints out the names of all files or subdirectories under the specified directory.

Arguments

Dev

CloseDir Dev

Datatype: dir

A variable with reference to the directory fetched with instruction openbir.

Syntax

CloseDir

[Dev ':='] < variable (VAR) of dir>';'

Related information

For information about

Directory

Make a directory
Open a directory
Read a directory
Remove a directory
Remove a file

Rename a file

See

dir - File directory structure on page 1103

MakeDir - Create a new directory on page 218
OpenDir - Open a directory on page 285

ReadDir - Read next entry in a directory on page 944
RemoveDir - Delete a directory on page 355
RemoveFile - Delete a file on page 356

RenamekFile - Rename a file on page 357

56

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.23. Comment - Comment
RobotWare - OS

1.23. Comment - Comment

Usage

comment isonly used to make the program easier to understand. It has no effect on the
execution of the program.

Basic examples

Example 1

Arguments

Comment

A basic example of the instruction comment isillustrated below.

! Goto the position above pallet
MoveL pl00, v500, z20, tooll;
A comment is inserted into the program to make it easier to understand.

I Comment

Text string
Any text.

Program execution

Nothing happens when you execute this instruction.

Syntax

(EBNF)

"1' {<character>} <newline>

Related information

For information about See

Characters permitted in a comment Technical reference manual - RAPID overview

Comments within data and routine dec- Technical reference manual - RAPID overview
larations

3HAC 16581-1 Revision: J 57

1 Instructions

1.24. Compact IF - If a condition is met, then... (one instruction)

RobotWare - OS

1.24. Compact IF - If a condition is met, then... (one instruction)

Usage

Compact IF isusedwhenasingleinstructionisonly to beexecuted if agiven conditionis
met.

If different instructions are to be executed, depending on whether the specified condition is
met or not, the IF instruction is used.

Basic examples

Basic examples of the instruction compact IF areillustrated below.

Example 1
IF regl > 5 GOTO next;
If reg1 isgreater than s, program execution continues at the next label.
Example 2
IF counter > 10 Set dol;
Thedo1 signal issetif counter > 10.
Arguments
IF Condition ...
Condition
Datatype: bool
The condition that must be satisfied for the instruction to be executed.
Syntax
(EBNF)
IF <conditional expression> (<instructions | <SMT>) ';'
Related information
For information about See
Conditions (logical expressions Technical reference manual - RAPID overview
IF with several instructions IF - If a condition is met, then ...; otherwise ... on

page 129

58

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.25. ConfJ - Controls the configuration during joint movement
RobotWare - OS

1.25. ConfJ - Controls the configuration during joint movement

Usage

confJ (Configuration Joint) is used to specify whether or not the robot’s configuration is to
be controlled during joint movement. If it is not controlled, the robot can sometimes use a
different configuration than that which was programmed.

With confg \0ff, therobot cannot switch main axis configuration - it will search for a
solution with the same main axis configuration as the current one, but it movesto the closest
wrist configuration for axes 4 and 6.

Thisinstruction can only be used in themain task T roB1 or, if in aMultiMove system, in
Mation tasks.

Basic examples

Example 1

Example 2

Basic examples of the instruction confJ areillustrated bel ow.

ConfJ \Off;

Moved *, v1000, fine, tooll;
The robot moves to the programmed position and orientation. If this position can be reached
in several different ways, with different axis configurations, the closest possible position is
chosen.

ConfJd \On;

MoveJd *, v1000, fine, tooll;
Therobot movesto the programmed position, orientation and axis configuration. If thisis not
possible, program execution stops.

Arguments

[\On]

[\Off 1]

ConfJd [\On] | [\Off]

Datatype: switch

The robot always moves to the programmed axis configuration. If thisis not possible using
the programmed position and orientation, program execution stops.

The IRB5400 robot will move to the programmed axis configuration or to an axis
configuration close the the programmed one. Program execution will not stop if itis
impossible to reach the programmed axis configuration.

Datatype: switch
The robot always moves to the closest axis configuration.

Continues on next page

3HAC 16581-1 Revision: J 59

1 Instructions

1.25. ConfJ - Controls the configuration during joint movement

RobotWare - OS
Continued

Program execution

If the argument \on (or no argument) is chosen, the robot always moves to the programmed
axis configuration. If thisis not possible using the programmed position and orientation,
program execution stops before the movement starts.

If theargument \ of £ ischosen, therobot always movesto the closest axisconfiguration. This
may be different to the programmed one if the configuration has been incorrectly specified
manually, or if a program displacement has been carried out.

To control the configuration (confJ \on) isactive by default. Thisis automatically set:
e Atacold start-up.
¢ When anew program is loaded.
¢ When starting program execution from the beginning.

Syntax
Confd
['\' Oon]l | ['\' Off]';’
Related information
For information about See
Handling different configurations Technical reference manual - RAPID overview
Robot configuration during linear ConfL - Monitors the configuration during linear
movement movement on page 61

60

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.26. ConfL - Monitors the configuration during linear movement
RobotWare - OS

1.26. ConfL - Monitors the configuration during linear movement

Usage
confL (Configuration Linear) is used to specify whether or not the robot’s configuration is
to be monitored during linear or circular movement. If it is not monitored, the configuration
at execution time may differ from that at programmed time. It may also result in unexpected
sweeping robot movements when the mode is changed to joint movement.

Thisinstruction can only be used inthemain task T roB1 or, if in aMultiMove system, in
Mation tasks.

NOTE!
H For the IRB 5400 robot monitoring is always off independent of what is specified in confL.

Basic examples
Basic examples of the instruction confL are illustrated below.

Example 1
ConfL \On;
MoveL *, v1000, fine, tooll;
Program execution stops when the programmed configuration is not possible to reach from
the current position.
Example 2
SingArea \Wrist;
Confl \On;
MoveL *, v1000, fine, tooll;
The robot movesto the programmed position, orientation and wrist axis configuration. If this
is not possible, program execution stops.
Example 3
Confl. \Off;
MoveL *, v1000, fine, tooll;
The robot moves to the programmed position and orientation but to the closest possible axis
configuration, which can be different from the programmed.
Arguments
ConfL [\On] | [\Off]
[\On]
Datatype: switch
The robot configuration is monitored.
[\Off]

Datatype: switch
The robot configuration is not monitored.

Continues on next page
3HAC 16581-1 Revision: J 61

1 Instructions

1.26. ConfL - Monitors the configuration during linear movement

RobotWare - OS
Continued

Program execution

During linear or circular movement, the robot always movesto the programmed position and
orientation that has the closest possible axis configuration. If the argument \on (or no
argument) is chosen, then the program execution stops as soon as there’s arisk that the
configuration of the programmed position will not be attained from the current position.

However, it is possible to restart the program again, although the wrist axes may continue to
be the wrong configuration. At astop point, the robot will check that the configurations of all
axes are achieved, not only the wrist axes.

If singArea\Wrist iSalso used, the robot always moves to the programmed wrist axis
configuration and at a stop point the remaining axes configurations will be checked.

If the argument \o£ £ is chosen, there is no monitoring.

A simpleruleto avoid problems, both for confr\on and \0ff£, isto insert intermediate
points to make the movement of each axis less than 90 degrees between points. More
precisely, the sum of movementsfor any of the par of axes (1+4), (1+6), (3+4) or (3+6) should
not exceed 180 degrees.

If confL\Of f isused with abig movement, it can cause stopsdirectly or later in the program
with error 50050 Position outside reachor 50080 Position not compatible.In
aprogram with confL\Of £ it isrecommended to have movements to known configurations
points with“ ConfJ\0On + MoveJ” Of “ConfL\On + SingArea\Wrist + Movel" a&sstart
points for different program parts.

Monitoring is active by default. Thisis automatically set:
» Atacold start-up.
* When anew program isloaded.

* When starting program execution from the beginning.

Syntax
ConfL
['\" on] | ['\' Ooff]"';'
Related information
For information about See
Handling different configurations Technical reference manual - RAPID overview
Robot configuration during joint ConfJ - Controls the configuration during joint
movement movement on page 59

Define interpolation around singular SingArea - Defines interpolation around singular
points points on page 447

62

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.27. CONNECT -

Usage

1.27. CONNECT - Connects an interrupt to a trap routine
RobotWare - OS

Connects an interrupt to a trap routine

CONNECT is used to find the identity of an interrupt and connect it to atrap routine.

Theinterrupt isdefined by ordering an interrupt event and specifying itsidentity. Thus, when
that event occurs, the trap routine is automatically executed.

Basic examples

Example 1

A basic example of the instruction connecT isillustrated below.

VAR intnum feeder low;

CONNECT feeder low WITH feeder empty;

ISignalDI dil, 1 , feeder low;
An interrupt identity feeder low is created which is connected to the trap routine
feeder empty. Therewill be an interrupt when input di1 is getting high. In other words,
when this signal becomes high, the feeder empty trap routineis executed.

Arguments

Interrupt

Trap routine

CONNECT Interrupt WITH Trap routine

Datatype: intnum

The variable that isto be assigned the identity of the interrupt. This must not be declared
within aroutine (routine data).

Identifier

The name of the trap routine.

Program execution

Limitations

Thevariable isassigned an interrupt identity which shall be used when ordering or disabling
interrupts. Thisidentity is also connected to the specified trap routine.

NOTE!

All interrupts in atask are cancelled when program pointer is set to main for that task and
must be reconnected. The interrupts will not be affected by a power fail or awarm start.

Aninterrupt (interrupt identity) cannot be connected to more than one trap routine. Different
interrupts, however, can be connected to the same trap routine.

When an interrupt has been connected to atrap routine, it cannot be reconnected or
transferred to another routine; it must first be deleted using theinstruction Ipelete.

Interrupts that come or have not been handled when program execution is stopped will be
neglected. The interrupts are not considered when stopping the program.

Continues on next page

3HAC 16581-1 Revision: J 63

1 Instructions

1.27. CONNECT - Connects an interrupt to a trap routine

RobotWare - OS
Continued

Error handling

If theinterrupt variable isaready connected to a TRAP routine, the system variable ERRNO is

set to ERR_ALRDYCNT.

If theinterrupt variable is not a variable reference, the system variable ERRNO is set to

ERR_CNTNOTVAR.

If no moreinterrupt numbers are available, the system variable ERRNO iSSet t0 ERR_ INOMAX.

These errors can be handled in the ERROR handler.

Syntax

(EBNF)

CONNECT <connect target> WITH <trap>';'

<connect targets> ::= <variable>
| <parameters
| <VAR>
<trap> ::= <identifiers

Related information

For information about

Summary of interrupts
More information on interrupt management
Data type for interrupt
Cancelling an interrupt

See

Technical reference manual - RAPID overview
Technical reference manual - RAPID overview
intnum - Interrupt identity on page 1125
IDelete - Cancels an interrupt on page 123

64

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.28. CopyFile - Copy a file
RobotWare - OS

1.28. CopyFile - Copy afile

Usage

CopyFile isused to make a copy of an existing file.

Basic examples

A basic example of theinstruction copyFile isillustrated below.

Example 1
CopyFile"HOME:/myfile", "HOME:/yourfil€";
Thefilemyfile iscopied to yourfile. Both filesarethen identical.
CopyFile "HOME:/myfile", "HOME:/mydir/yourfile";
Thefilemyfile iscopied to yourfile indirectory mydir.
Arguments
CopyFile OldPath NewPath
OldpPath
Datatype: string
The complete path of the file to be copied from.
NewPath

Datatype: string
The complete path where the file is to be copied to.

Program execution

Thefile specified in 01drath will be copied to the file specified in NewPath.

Error Handling

If thefile specified in NewPath aready exists, the system variable ERRNO is set to
ERR_FILEEXIST. Thiserror can then be handled in the error handler.

Syntax

CopyFile
[OldPath ':='] < expression (IN) of string > ','
[NewPath ':='] < expression (IN) of string >';'

Continues on next page

3HAC 16581-1 Revision: J 65

1 Instructions

1.28. CopyFile - Copy a file
RobotWare - OS
Continued

Related information

For information about

Make a directory

Remove a directory
Rename a file
Remove a file
Check file type
Check file size

Check file system size

See

MakeDir - Create a new directory on page
218

RemoveDir - Delete a directory on page 355
RenameFile - Rename a file on page 357
RemoveFile - Delete a file on page 356
IsFile - Check the type of a file on page 878

FileSize - Retrieve the size of a file on page
842

FSSize - Retrieve the size of a file system on
page 848

66

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.29. CopyRawBytes - Copy the contents of rawbytes data
RobotWare - OS

1.29. CopyRawBytes - Copy the contents of rawbytes data

Usage

CopyRawBytes isused to copy al or part of the contents from one rawbytes variableto
another.

Basic examples

A basic example of the instruction copyRawBytes isillustrated below.

Example 1
VAR rawbytes from raw data;
VAR rawbytes to_raw data;
VAR num integer := 8
VAR num float := 13.4;
ClearRawBytes from raw data;
PackRawBytes integer, from raw data, 1 \IntX := DINT;
PackRawBytes float, from raw data, (RawBytesLen(from raw data)+1)
\Float4;
CopyRawBytes from raw data, 1, to_raw data, 3,
RawBytesLen (from raw data) ;
In this example the variable from raw data of type rawbytes isfirst cleared,that is all
bytesset to 0. Then inthefirst 4 bytesthe value of integer isplaced and in the next 4 bytes
thevalue of float.
After having filled from_raw_data with data, the contents (8 bytes) is copied to
to_raw_data, Starting at position 3.
Arguments
CopyRawBytes FromRawData FromIndex ToRawData
ToIndex [\NoOfBytes]
FromRawData
Datatype: rawbytes
FromRawData iSthe data container from which the rawbytes data shall be copied.
FromIndex
Datatype: num
FromIndex iSthe position in FromrawData where the datato be copied starts. Indexing
starts at 1.
ToRawData
Datatype: rawbytes
ToRawData IS the data container to which the rawbytes data shall be copied.
ToIndex

Datatype: num

ToIndex iSthepositionin TorawbData Wherethedatato be copied will be placed. Everything
is copied to the end. Indexing starts at 1.

Continues on next page

3HAC 16581-1 Revision: J 67

1 Instructions

1.29. CopyRawBytes - Copy the contents of rawbytes data

RobotWare - OS
Continued

[\NoOfBytes]

Datatype: num

The value specified with \NoofBytes isthe number of bytesto be copied from
FromRawData tO ToRawData.

If \NoOfBytes isnot specified, all bytes from FromIndex to the end of current length of
valid bytesin FromrRawData IS copied.

Program execution

During program execution data is copied from one rawbytes variable to another.

The current length of valid bytesin the TorawData variableis set to:

(ToIndex + copied_number_of bytes- 1)

The current length of valid bytesin the TorawData variable is not changed, if the
complete copy operation is done inside the old current length of valid bytesin the
ToRawData variable.

Limitations

CopyRawBytes can hot be used to copy some datafrom one rawbytes variableto other part
of the same rawbytes variable.

Syntax

CopyRawBytes
[FromRawData ':='] < wvariable (VAR) of rawbytes> ','
[FromIndex ':='] < expression (IN) of num> ',
[ToRawData ':='] < variable (VAR) of rawbytess> ','
[ToIndex ':='] < expression (IN) of nums>
['"\'NoOfBytes ':=' < expression (IN) of num>]';'

Continues on next page

68

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.29. CopyRawBytes - Copy the contents of rawbytes data
RobotWare - OS

Continued
Related information

For information about See

rawbytes data rawbytes - Raw data on page 1165

Get the length of rawbytes data RawBytesLen - Get the length of rawbytes data on
page 940

Clear the contents of rawbytes data ClearRawBytes - Clear the contents of rawbytes data
on page 49

Pack DeviceNet header into PackDNHeader - Pack DeviceNet Header into

rawbytes data rawbytes data on page 287

Pack data into rawbytes data PackRawBytes - Pack data into rawbytes data on
page 290

Write rawbytes data WriteRawBytes - Write rawbytes data on page 725

Read rawbytes data ReadRawBytes - Read rawbytes data on page 352

Unpack data from rawbytes data UnpackRawBytes - Unpack data from rawbytes data
on page 658

3HAC 16581-1 Revision: J 69

1 Instructions

1.30. CorrClear - Removes all correction generators
Path Offset

1.30. CorrClear - Removes all correction generators

Descriptions

CorrClear isused to remove all connected correction generators. The instruction can be
used to remove all offsets provided earlier by all correction generators.

Basic examples

Basic examples of the instruction corrclear areillustrated below.

Example 1
CorrClear;
Theinstruction removes all connected correction generators.
NOTE!
H An easy way to ensure that all correction generators (with corrections) are removed at
program start, iSto run CorrClear in a START event routine.
See Technical reference manual - System parameters, topic Controller.
Syntax

CorrClear ';'

Related information

For information about

Connects to a correction generator

Disconnects from a correction generator

Writes to a correction generator

Reads the current total offsets

Correction descriptor

See

CorrCon - Connects to a correction generator on
page 71

CorrDiscon - Disconnects from a correction
generator on page 76

CorrWrite - Writes to a correction generator on
page 77

CorrRead - Reads the current total offsets on
page 803

corrdescr - Correction generator descriptor on
page 1099

70

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.31. CorrCon - Connects to a correction generator
Path Offset

1.31. CorrCon - Connects to a correction generator

Usage

CorrCon isused to connect to a correction generator.

Basic examples

Examplel

Arguments

Descr

A basic example of theinstruction corrcon isillustrated below.

See also More examples on page 71.

VAR corrdescr id;

CorrCon 1id;

The correction generator reference corresponds to the variable id reservation.

CorrCon Descr

Datatype: corrdescr
Descriptor of the correction generator.

More examples

More examples of the instruction corrcon areillustrated below.

Path coordinate system

All path corrections (offsets on the path) are added in the path coordinate system. The path
coordinate system is defined asillustrated below:

P = Path coordinate system
T = Tool coordinate system

Path direction ->

xx0500002156
» Path coordinate axis X is given as the tangent of the path.

» Path coordinate axis Y is derived as the cross product of tool coordinate axis Z and
path coordinate axis X.

» Path coordinate axis Z is derived as the cross product of path coordinate axis X and
path coordinate axis Y.

Continues on next page

3HAC 16581-1 Revision: J 71

1 Instructions

1.31. CorrCon - Connects to a correction generator

Path Offset
Continued

Application example

Program example

An example of an application using path correctionsisarobot holding atool with two sensors
mounted on it to detect the vertical and horizontal distancesto awork object. The figure

below illustrates a path correction device.

Sensor for
horizontal correction

Sensor for
vertical correction

Path coordinate system | \

Xp e

xx0500002155

NOTE! hori sig and vert sig are analog signals defined in system

parameters.
CONST num TARGET DIST := 5;
CONST num SCALE FACTOR := 0.5;

VAR intnum intnol;
VAR corrdescr hori_ id;
VAR corrdescr vert id;
VAR pos total offset;
VAR pos write offset;
VAR bool conFlag;

PROC PathRoutine ()

! Connect to the correction generators for horizontal and
vertical correction.

CorrCon hori id;
CorrCon vert id;

conFlag := TRUE;

| Setup a 5 Hz timer interrupt. The trap routine will read the
sensor values and

! compute the path corrections.
CONNECT intnol WITH ReadSensors;
ITimer\Single, 0.2, intnol;

! Position for start of contour tracking
MoveJd pl0,v100,z10,tooll;
! Run MoveL with both vertical and horizontal correction.

MoveL p20,v100,z10,tooll\Corr;

Continues on next page

72

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.31. CorrCon - Connects to a correction generator
Path Offset
Continued

! Read the total corrections added by all connected correction
generators.

total offset := CorrRead() ;
! Write the total vertical correction on the FlexPendant.

TPWrite "The total vertical correction is:"
\Num:=total offset.z;

! Disconnect the correction generator for vertical correction.
! Horizontal corrections will be unaffected.
CorrDiscon vert id;

conFlag := FALSE;

! Run Movel with only horizontal interrupt correction.
MoveL p30,v100,2z10,tooll\Corr;
! Remove all outstanding connected correction generators.

! In this case, the only connected correction generator is the
one for horizontal

! correction.
CorrClear;
! Remove the timer interrupt.
IDelete intnol;
ENDPROC

TRAP ReadSensors
VAR num horiSig;

VAR num vertSig;

! Compute the horizontal correction values and execute the

correction.
horiSig := hori sig;
write offset.x := 0;
write offset.y := (hori sig - TARGET DIST) *SCALE FACTOR;

write offset.z 0;

CorrWrite hori_id, write_offset;

IF conFlag THEN

! Compute the vertical correction values and execute the

correction.
write offset.x := 0;
write offset.y := 0;
write offset.z := (vert sig - TARGET DIST) *SCALE_FACTOR;

CorrWrite vert id, write offset;
ENDIF
!Setup interrupt again
IDelete intnol;
CONNECT intnol WITH ReadSensors;
ITimer\single, 0.2, intnol;
ENDTRAP

Continues on next page
3HAC 16581-1 Revision: J 73

1 Instructions

1.31. CorrCon - Connects to a correction generator

Path Offset
Continued

Program explanation

Two correction generators are connected with the instruction corrcon. Each correction
generator is referenced by a unique descriptor (hori_id and vert_id) of thetype
corrdescr. Thetwo sensors will use one correction generator each.

A timer interrupt is set up to call the trap routine Readsensors with afrequency of 5 Hz.
The offsets, needed for path correction, are computed in the trap routine and written to the
corresponding correction generator (referenced by the descriptorshori_id and vert id)
by the instruction corrwrite. All the corrections will have immediate effect on the path.

The MoveL instruction must be programmed with the switch argument corr when path
corrections are used. Otherwise, no corrections will be executed.

When the first MoveL instruction is ready, the function corrread is used to read the sum of
all the corrections (the total path correction) given by al the connected correction generators.
The result of the total vertical path correction iswritten to the FlexPendant with the
instruction TPWrite.

CcorrDiscon Will then disconnect the correction generator for vertical correction (referenced
by the descriptor vert _id). All corrections added by this correction generator will be
removed from thetotal path correction. The corrections added by the correction generator for
horizontal correction will still be preserved.

Finally, the function corrclear will remove all remaining connected correction generators
and their previously added corrections. In this case, it is only the correction generator for
horizontal correction that will be removed. The timer interrupt will also be removed by the
instruction IDelete.

The correction generators

The figure below illustrates the correction generators.

X| y| z Path coordinate axis.
0| 0] 3 Vertical correction generator, with the sum of all its own path corrections
0| 1] 0 Horizontal correction generator with the sum of all its own path corrections

- - - Not connected correction generator.

- - - Not connected correction generator.

- -] - Not connected correction generator.

0] 1] 3 The sum of all corrections done by all connected correction generators.

xx0500002160

Limitations

A maximum number of 5 correction generators can be connected simultaneously.
Connected Correction Generators do not survive a controller restart.

Syntax

CorrCon

[Descr ':='] < variable (VAR) of corrdescr > ';'

Continues on next page

74

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.31. CorrCon - Connects to a correction generator

Path Offset
Continued

Related information

For information about

Disconnects from a correction generator

Writes to a correction generator

Reads the current total offsets

Removes all correction generators

Correction generator descriptor

See
CorrDiscon - Disconnects from a correction
generator on page 76

CorrWrite - Writes to a correction generator
on page 77

CorrRead - Reads the current total offsets
on page 803

CorrClear - Removes all correction
generators on page 70

corrdescr - Correction generator descriptor
on page 1099

3HAC 16581-1 Revision: J

75

1 Instructions

1.32. CorrDiscon - Disconnects from a correction generator
Path Offset

1.32. CorrDiscon - Disconnects from a correction generator

Description
CorrDiscon isused to disconnect from a previously connected correction generator. The
instruction can be used to remove corrections given earlier.

Basic examples
A basic example of the instruction corrbiscon isillustrated below.

See also More examples on page 76.

Example 1
VAR corrdescr id;
CorrCon id;
CorrDiscon id;
corrDiscon disconnects from the previously connected correction generator referenced by
the descriptor id.
Arguments
CorrDiscon Descr
Descr

Datatype: corrdescr
Descriptor of the correction generator.

More examples
For more examples of the instruction CorrDiscon, see CorrCon - Connects to a correction
generator on page 71.

Syntax
CorrDiscon
[Descr ':='] < variable (VAR) of corrdescr > ';'
Related information
For information about See

Connects to a correction generator
Writes to a correction generator
Reads the current total offsets
Removes all correction generators

Correction descriptor

CorrCon - Connects to a correction generator on
page 71

CorrWrite - Writes to a correction generator on
page 77

CorrRead - Reads the current total offsets on
page 803

CorrClear - Removes all correction generators on
page 70

corrdescr - Correction generator descriptor on
page 1099

76

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.33. CorrWrite - Writes to a correction generator
Path Offset

1.33. CorrWrite - Writes to a correction generator

Description

CorrWrite isused to write offsetsin the path coordinate system to a correction generator.

Basic examples

A basic example of theinstruction corrwrite isillustrated below.

Example 1
VAR corrdescr id;
VAR pos offset;
CorrWrite id, offset;
The current offsets, stored in the variable offset, are written to the correction generator
referenced by the descriptor id.
Arguments
CorrWrite Descr Data
Descr
Datatype: corrdescr
Descriptor of the correction generator.
Data

Datatype: pos
The offset to be written.

More examples

For more examples of the instruction CorrWrite, see CorrCon - Connects to a correction
generator on page 71.

Limitations
The best performance is achieved on straight paths. As the speed and angles between
consecutive linear pathsincrease, the deviation from the expected path will alsoincrease. The
same applies to circles with decreasing circle radius.

Syntax

CorrWrite
[Degscr ':='] < variable (VAR) of corrdescr > ','
[Data ':='] < expression (IN) of pos > ';'

Continues on next page

3HAC 16581-1 Revision: J 77

1 Instructions

1.33. CorrWrite - Writes to a correction generator
Path Offset
Continued

Related information

For information about

Connects to a correction generator
Disconnects from a correction generator
Reads the current total offsets
Removes all correction generators

Correction generator descriptor

See

CorrCon - Connects to a correction generator on
page 71

CorrDiscon - Disconnects from a correction
generator on page 76

CorrRead - Reads the current total offsets on
page 803

CorrClear - Removes all correction generators
on page 70

corrdescr - Correction generator descriptor on
page 1099

78

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.34. DeactUnit - Deactivates a mechanical unit
RobotWare - OS

1.34. DeactUnit - Deactivates a mechanical unit

Usage

DeactUnit isused to deactivate a mechanical unit.

It can be used to determine which unit isto be active when, for example, common drive units
are used.

Thisinstruction can only be used inthemain task T roB1 or, if inaMultiMove system, in
Motion tasks.

Examples

Example 1

Example 2

Example 3

Basic examples of the instruction beactunit areillustrated below.

DeactUnit orbit_ a;

Deactivation of the orbit_a mechanica unit.

MoveL pl0, v100, fine, tooll;

DeactUnit track motion;

MoveL p20, v100, zl10, tooll;

MoveL p30, v100, fine, tooll;

ActUnit track motion;

MoveL p40, v100, z10, tooll;
Theunit track_motion will be stationary when the robot movestop20 and p30. After this,
both the robot and track_motion will moveto p4o.

MoveL pl0, v100, fine, tooll;
DeactUnit orbitl;
ActUnit orbit2;
MovelL p20, v100, zl1l0, tooll;
The unit orbit1 isdeactivated and orbit2 is activated.

Arguments

MechUnit

Program execution

DeactUnit MechUnit

Mechanical Unit
Datatype: mecunit
The name of the mechanical unit that is to be deactivated.

When the robot’s and external axes' actual path is ready, the path on current path level is
cleared and the specified mechanical unit is deactivated. This meansthat it will neither be
controlled nor monitored until it is re-activated.

If several mechanical units share acommon drive unit, deactivation of one of the mechanical
units will also disconnect that unit from the common drive unit.

Continues on next page

3HAC 16581-1 Revision: J 79

1 Instructions

1.34. DeactUnit - Deactivates a mechanical unit

RobotWare - OS
Continued

Limitations

Instruction beactUnit cannot be used when one of the mechanical unit isin independent
mode.

If thisinstruction is preceded by a move instruction, that move instruction must be
programmed with a stop point (zonedata £ine), not afly-by point, otherwise restart after
power failure will not be possible.

DeactUnit cannot be executed in a RAPID routine connected to any of following special
system events. PowerOn, Stop, QStop, Restart or Step.

Itispossibleto use ActUnit - DeactUnit On StorePath level, but the same mechanical
units must be active when doing RestoPath aswhen storepath was done. If such
operation the Path Recorder and the path on the base level will beintact, but the path on the
StorePath level will be cleared.

Syntax

DeactUnit

[MechUnit ':='] < variable (VAR) of mecunit> ';'

Related information

For information about See

Activating mechanical units ActUnit - Activates a mechanical unit on page 17
Mechanical units mecunit - Mechanical unit on page 1139

Path Recorder PathRecMoveBwd - Move path recorder
backwards on page 298

mecunit - Mechanical unit on page 1139

80

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.35. Decr - Decrements by 1
RobotWare - OS

1.35. Decr - Decrements by 1

Usage
Decr isused to subtract 1 from a numeric variable or persistent.

Basic examples
A basic example of theinstruction pecr isillustrated below.

See also More examples on page 81.

Example 1
Decr regl;
1 is subtracted from regi, that isregl:=regi-1.
Arguments
Decr Name | Dname
Name
Datatype: num
The name of the variable or persistent to be decremented.
Dname

Datatype: dnum
The name of the variable or persistent to be decremented.

More examples
More examples of the instruction pecr areillustrated below.

Example 1

VAR num no_of_ parts:=0;

TPReadNum no of parts, "How many parts should be produced? ";
WHILE no_of parts>0 DO
produce_part;
Decr no_of parts;
ENDWHILE
The operator is asked to input the number of parts to be produced. The variable
no_of parts isused to count the number that still have to be produced.

Example 2
VAR dnum no of parts:=0;

TPReadDnum no_of parts, "How many parts should be produced? ";
WHILE no of parts>0 DO
produce part;
Decr no_of parts;
ENDWHILE
The operator is asked to input the number of partsto be produced. The variable
no_of parts isused to count the number that still have to be produced.

Continues on next page

3HAC 16581-1 Revision: J 81

1 Instructions

1.35. Decr - Decrements by 1

RobotWare - OS

Continued
Syntax
Decr
[Name ':='] < var or pers (INOUT) of num >
| [Dname ':='] < var or pers (INOUT) of dnum >' ;'
Related information
For information about See
Incrementing a variable by 1 Incr - Increments by 1 on page 131
Subtracting any value from a variable Add - Adds a numeric value on page 19
Changing data using an arbitrary ":=" - Assigns a value on page 24

expression, e.g. multiplication

82

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.36. DitherAct - Enables dither for soft servo
RobotWare - OS

1.36. DitherAct - Enables dither for soft servo

Usage
DitheraAct isused to enable the dither functionality, which will reduce the friction in soft
servo for IRB 7600.

Thisinstruction can only be used in the main task T_roB1 or, if in aMultiMove system, in
Motion tasks.

Basic examples
Basic examples of the instruction Ditheract areillustrated below.

Example 1
SoftAct \MechUnit:=ROB_1, 2, 100;
WaitTime 2;
DitherAct \MechUnit:=ROB_1, 2;
WaitTime 1;
DitherDeact;
SoftDeact;
Dither is enabled only for one second while in soft servo.
Example 2
DitherAct \MechUnit:=ROB 1, 2;
SoftAct \MechUnit:=ROB_1, 2, 100;
WaitTime 1;
MovelL pl, v50, z20, tooll;
SoftDeact;
DitherDeact;
Dither isenabled for axis 2. Movement isdelayed for one second to allow sufficient transition
timefor the softact ramp. If Ditheract iscalled before softact, dither will start
whenever asoftact isexecuted for that axis. If no bitherbeact iscalled, dither will stay
enabled for al subsequent softact calls.
Arguments
DitherAct [\MechUnit] Axis [\Levell
[\MechUnit]
Mechanical Unit
Datatype: mecunit
The name of the mechanical unit. If argument isomitted, it means activation of the soft servo
for specified robot axis.
Axis

Datatype: num
Axis number (1-6).

Continues on next page
3HAC 16581-1 Revision: J 83

1 Instructions

1.36. DitherAct - Enables dither for soft servo

RobotWare - OS
Continued

[\Level]

Datatype: num

Amplitude of dither (50-150%). At 50%, oscillations are reduced (increased friction). At
150%, amplitude is maximum (may result in vibrations of endeffector). The default valueis
100%.

Program execution

Limitations

DitherAct can be called before, or after softact. Caling bitheract after softact is
faster but it has other limitations.

Dither isusually not reguired for axis 1 of IRB 7600. Highest effect of friction reduction is
onaxes2and 3.

Dither parameters are self-adjusting. Full dither performance is achieved after three or four
executions of softAct in process position.

Calling pitheract after softact may cause unwanted movement of the robot. The only
way to eliminate this behavior isto call Ditheract before softact. If there till is
movement, SoftAct ramp time should be increased.

The transition time is the ramp time, which varies between robots, multiplied with the ramp
factor of the sof tact-instruction.

Dithering is not available for axis 6.

Dither is always deactivated when there is a power failure.
Theinstruction isonly to be used for IRB 7600.
WARNING!

When calling bitheract before softact therobot must bein afine point. Also, leaving
thefine point isnot permitted until the transition time of the ramp is over. This might
damage the gear boxes.

Syntax
DitherAct
['"\' MechUnit ':=' < variable (VAR) of mecunit >]
[Axis ':='] < expression (IN) of num >
["\' Level ':=' < expression (IN) of num >] ';'
Related information
For information about See
Activating Soft Servo SoftAct - Activating the soft servo on page 473
Behavior with the soft servo engaged Technical reference manual - RAPID overview
Disable of dither DitherDeact - Disables dither for soft servo on

page 85

84

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.37. DitherDeact - Disables dither for soft servo
RobotWare - OS

1.37. DitherDeact - Disables dither for soft servo

Usage
DitherDeact isused to disable the dither functionality for soft servo of IRB 7600.

Thisinstruction can only be used in themain task T roB1 or, if in aMultiMove system, in
Mation tasks.

Basic examples
A basic example of the instruction DitherDeact isillustrated below.

Example 1
DitherDeact;
Deactivates dither on all axis.

Program execution

DitherDeact can be used at any time. If in soft servo, dither stopsimmediately on all axes.
If not in soft servo, dither will not be active when next softact is executed.

The dither is automatically disabled
« atacold start-up
* when anew program is loaded
» when starting program execution from the beginning.

Syntax
DitherDeact!';"
Related information
For information about See
Activating dither DitherAct - Enables dither for soft servo on page

83

3HAC 16581-1 Revision: J 85

1 Instructions

1.38. DropWOhbj - Drop work object on conveyor
Conveyor Tracking

1.38. DropWODbj - Drop work object on conveyor

Usage
DropWOb3j (Drop Work Object) isused to disconnect from the current object and the program
is ready for the next object on the conveyor.

Basic examples
A basic example of the instruction bropwob; isillustrated bel ow.

Example 1
MoveL *, v1000, z10, tool, \WObj:=wobj on cnvl;
MoveL *, v1000, fine, tool, \WObj:=wobjo;
DropWObj wobj on cnvl;
MoveL *, v1000, z1l0, tool, \WObj:=wobjo;
Arguments
DropWObj WObj
WObj

Work Object
Datatype: wobjdata

The moving work object (coordinate system) to which the robot position in theinstructionis
related. The mechanical unit conveyor isto be specified by the ufmec in the work object.

Program execution
Dropping the work object means that the encoder unit no longer tracks the object. The object
is removed from the object queue and cannot be recovered.

Limitations

If the instruction isissued while the robot is actively using the conveyor coordinated work

object, then the motion stops.

Theinstruction may beissued only after a fixed work object has been used in the preceding

motion instructions with either afine point or several (>1) corner zones.
Syntax

DropWODbj
[WObj ':='] < persistent (PERS) of wobjdatas>';'

Related information

For information about See

Wait for work objects WaitWODbj - Wait for work object on conveyor on

page 701
Conveyor tracking Application manual - Conveyor tracking

86 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.39. EOffsOff - Deactivates an offset for external axes
RobotWare - OS

1.39. EOffsOff - Deactivates an offset for external axes

Usage
EOf£s0ff (External Offset Off) isused to deactivate an offset for external axes.
The offset for external axesisactivated by theinstruction Eof £sSet or EOf £s0n and applies
to all movements until some other offset for external axesis activated or until the offset for
external axesis deactivated.

Thisinstruction can only be used inthemain task T rRoB1 or, if inaMultiMove system, in
Motion tasks.

Basic examples
Basic examples of the instruction Eof £s0f £ are illustrated below.

Example 1
EOffsOff;
Deactivation of the offset for external axes.

Example 2
MovelL pl0, v500, z1l0, tooll;
EOffsOn \ExeP:=pl0, plil;
MovelL p20, v500, z1l0, tooll;
MovelL p30, v500, zl1l0, tooll;
EOffsOff;
MovelL p40, v500, z1l0, tooll;
An offset isdefined as the difference between the position of each axisat p10 andp11. This
displacement affects the movement to p20 and p30, but not to p4o.

Program execution
Active offsets for external axes are reset.

Syntax
EOffsOff ';'

Related information

For information about See

Definition of offset using two positions EOffsOn - Activates an offset for external axes on
page 88

Definition of offset using known values EOffsSet - Activates an offset for external axes
using known values on page 90

Deactivation of the robot's program dis- PDispOff - Deactivates program displacement on
placement page 316

3HAC 16581-1 Revision: J 87

1 Instructions

1.40. EOffsOn - Activates an offset for external axes

RobotWare - OS

1.40. EOffsOn - Activates an offset for external axes

Usage

EOffson (External Offset On) isused to define and activate an offset for external axesusing
two positions.

Thisinstruction can only be used in the main task T_roB1 or, if in aMultiMove system, in
Motion tasks.

Basic examples

Basic examples of the instruction Eoffson areillustrated below.
See also More examples on page 89.

Example 1
MoveL pl0, v500, z1l0, tooll;
EOffsOn \ExeP:=pl0, p20;
Activation of an offset for external axes. Thisis calculated for each axis based on the
difference between positionsp10 and p20.
Example 2
Movel, pl0, v500, fine \Inpos := inpos50, tooll;
EOffsOn *;
Activation of an offset for external axes. Since astop point that isaccurately defined hasbeen
used in the previous instruction, the argument \ ExeP does not have to be used. The
displacement is calculated on the basis of the difference between the actual position of each
axis and the programmed point (*) stored in the instruction.
Arguments
EOffsOn [\ExeP] ProgPoint
[\ExeP]
Executed Point
Datatype: robtarget
The new position, used for calculation of the offset. If this argument is omitted, the current
position of the axes at the time of the program execution is used.
ProgPoint
Programmed Point
Datatype: robtarget
The original position of the axes at the time of programming.
Continues on next page
88 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.40. EOffsOn - Activates an offset for external axes
RobotWare - OS
Continued

Program execution

The offset is calculated as the difference between \ExeP and ProgPoint for each separate
external axis. If \ExeP has not been specified, the current position of the axes at the time of
the program execution is used instead. Since it is the actual position of the axesthat is used,
the axes should not move when EOf £s0n iS executed.

This offset is then used to displace the position of external axes in subsequent positioning
instructions and remains active until some other offset isactivated (theinstruction Eof fsSet
or EO££s0n) or until the offset for external axesis deactivated (the instruction EOf £s0£ £).

Only one offset for each individual external axis can be activated at the same time. Several
EOffsoOn, on the other hand, can be programmed one after the other and, if they are, the
different offsets will be added.

The external axes offset is automatically reset:
e Atacold start-up.
* When anew program isloaded.

* When starting program execution from the beginning.

More examples

Example 1

More examples of how to use the instruction Eof £son areillustrated below.

SearchlL senl, psearch, pl0, v100, tooll;

PDispOn \ExeP:=psearch, *, tooll;

EOffsOn \ExeP:=psearch, *;
A searchiscarried out in which the searched position of both the robot and the external axes
is stored in the position psearch. Any movement carried out after this starts from this
position using a program displacement of both the robot and the external axes. Thisis
calculated based on the difference between the searched position and the programmed point
(*) stored in the instruction.

Syntax

Related information

EOffsOn
['\' ExeP ':=' < expression (IN) of robtarget> ', ']
[ProgPoint ':='] < expression (IN) of robtarget> ';'
For information about See
Deactivation of offset for external axes EOffsOff - Deactivates an offset for external
axes on page 87
Definition of offset using known values EOffsSet - Activates an offset for external axes

using known values on page 90

Displacement of the robot’s movements PDispOn - Activates program displacement on
page 317

Coordinate systems Technical reference manual - RAPID overview

3HAC 16581-1 Revision: J 89

1 Instructions

1.41. EOffsSet - Activates an offset for external axes using known values

RobotWare - OS

1.41. EOffsSet - Activates an offset for external axes using known values

Usage

EOffsSet (External Offset Set) isused to define and activate an offset for external axesusing
known values.

Thisinstruction can only be used in the main task T_roB1 or, if in aMultiMove system, in
Motion tasks.

Basic examples

Example 1

A basic example of theinstruction Eoffsset isillustrated below.

VAR extjoint eax a pl100 := [100, 0, O, O, O, O];

EOffsSet eax a pl00;
Activation of an offset eax a_p100 for external axes, meaning (provided that the logical
external axis"a" islinear) that:
» TheExtoffs coordinate system is displaced 100 mm for the logical axis"a" (see
figure below).
* Aslong asthisoffset isactive, al positions will be displaced 100 mm in the direction
of the x-axis.
The figure shows displacement of an external axis.

100

Normal

Coordinate System

| >

ExtOffs
Coordinate System

xx0500002162

Arguments

EAxOffs

EOffsSet EAxOffs

External Axes Offset

Datatype: extjoint

The offset for external axes is defined as data of the type extjoint, expressed in:
* mm for linear axes

» degreesfor rotating axes

Continues on next page

90

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.41. EOffsSet - Activates an offset for external axes using known values

RobotWare - OS
Continued

Program execution

The offset for external axesis activated when the Eof £sSet instruction is executed and
remains active until some other offset isactivated (theinstruction Eof fsSet or EOf £s0n) Or
until the offset for external axesis deactivated (the instruction EO££s0££).

Only one offset for external axes can be activated at the same time. Offsets cannot be added

to one another using EOf fsSet.

The external axes offset is automatically reset:

» Atacold start-up.

* When anew program is loaded.

* When starting program executing from the beginning.

Syntax
EOffsSet

[EAxOffs ':='] < expression (IN) of extjoint> ';'

Related information

For information about

Activate an offset for external axes

Deactivation of offset for external axes

Displacement of the robot’s movements

Definition of data of the type extjoint

Coordinate systems

See

EOffsOn - Activates an offset for external axes
on page 88

EOffsOff - Deactivates an offset for external
axes on page 87

PDispOn - Activates program displacement on
page 317

extjoint - Position of external joints on page 1118
Technical reference manual - RAPID overview

3HAC 16581-1 Revision: J

91

1 Instructions

1.42. EraseModule - Erase a module

RobotWare - OS

1.42. EraseModule - Erase a module

Usage

EraseModule isused to remove a module from the program memory during execution.

There are no restrictions on how the module wasoaded. It could have been loaded manually,
from the configuration, or with a combination of the instructions Load, StartLoad, and
WaitLoad.

The module cannot be defined as Shared in the configuration.

Basic examples

A basic example of the instruction EraseModule isillustrated below.

Example 1
EraseModule "PART A";
Erase the program module pART A from the program memory.
Arguments
EraseModule ModuleName
ModuleName

Datatype: string

The name of the module that should be removed. Please note that thisis the name of the
module, not the name of thefile.

Program execution

Limitations

The program execution waitsfor the program modul e to finish theremoval process beforethe
execution proceeds with the next instruction.

When the program module is removed the rest of the program modules will be linked.

It isnot alowed to remove a program modul e that is executing.

TRAP routines, system 1/O events, and other program tasks cannot execute during the
removal process.

Avoid ongoing robot movements during the removal.

Program stop during execution of EraseModule instruction resultsin guard stop with motors
off and error message 20025 Stop order timeout" on the FlexPendant.

Error handling

If thefilein the EraseModule instruction cannot be removed because it was not found, the
system variable ERRNO isset to ERR_MODULE. Thiserror can then be handled in the error
handler.

Syntax

EraseModule

[ModuleName':="'] <expression (IN) of strings';'"

Continues on next page

92

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.42. EraseModule - Erase a module
RobotWare - OS
Continued

Related information

For information about

Unload a program module

Load a program module in parallel with
another program execution

Accept unresolved reference

See

UnLoad - UnLoad a program module during
execution on page 655

StartLoad - Load a program module during
execution on page 482

WaitLoad - Connect the loaded module to the task
on page 682

Technical reference manual - System parameters,
section Controller

3HAC 16581-1 Revision: J

93

1 Instructions

1.43. ErrLog - Write an error message

RobotWare - OS

1.43. ErrLog - Write an error message

Usage

ErrLog isused to display an error message on the FlexPendant and writeit in the event log.
Error number and five error arguments must be stated. The message is stored in the process
domainin the robot log. ErrLog can aso be used to display warnings and information

Mmessages.

Basic examples

Example 1

Example 2

Basic examples of the instruction ExrrLog areillustrated below.

In case you do not want to make your own .xml file, you can use Error1d 4800 likeinthe
example below:

VAR errstr my title := "myerror";
VAR errstr strl := "errortextl";
VAR errstr str2 := "errortext2";
VAR errstr str3 := "errortext3";

VAR errstr strd4 := "errortext4d";
ErrLog 4800, my title, strl,str2,str3,str4;

On the FlexPendant the message will look like this:
Event Message: 4800

myerror

errortextl

errortext2

errortext3

errortext4

AnErrorId must bedeclaredinan .xml file. The number must be between 5000 - 9999. The
error message iswritten in the .xml file and the arguments to the message is sent in by the
ErrLog instruction. The Error1d inthe .xml fileisthe same stated in the ErrLog
instruction.
NOTE: If using an Errorld between 5000-9999 you have to install your own xml file.
Example of messagein .xml file:
<Message number="5210" eDefine="ERR_INPAR_RDONLY">
<Title>Parameter error</Title>
<Description>Task:<arg format="%s" ordinal="1" />
<p />Symbol <arg format="%s" ordinal="2" />is read-only
<p />Context:<arg format="%s" ordinal="3" /><p />
</Description>

</Message>

Continues on next page

94

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.43. ErrLog - Write an error message
RobotWare - OS
Continued

Example of instruction:

MODULE MyModule
PROC main ()
VAR num errorid := 5210;
VAR errstr arg := "P1";

ErrLog errorid, ERRSTR_TASK, arg,
ERRSTR_CONTEXT, ERRSTR_UNUSED, ERRSTR UNUSED;

ErrLog errorid \W, ERRSTR TASK, arg,
ERRSTR_CONTEXT, ERRSTR UNUSED, ERRSTR UNUSED;

ENDPROC
ENDMODULE

On the FlexPendant the message will look like this:
Event Message: 5210

Parameter error

Task: T_ROB1

Symbol P1lisread-only.

Context: MyModule/main/ErrL og

Thefirst ErrLog instruction generates an error message. The message is stored in the robot
log in the process domain. It is aso shown on the FlexPendant display.

The second instruction isawarning. A message is stored in the robot log only.
The program will in both cases continue its execution when the instruction is done.

Arguments

ErrorId

[\wW]

[\I]

ErrLog ErrorID [\W] | [\I] Argumentl Argument2 Argument3 Argument4
Argument5

Datatype: num

The number of a specific error that isto be monitored. The error number must bein interval
4800-4814 if using the preinstalled xml file, and between 5000 - 9999 if using an own xml
file

Warning
Datatype: switch

Gives awarning that is stored in the robot event log only (not shown directly on the
FlexPendant display).

Information
Datatype: switch

Gives an information message that is stored in the event log only (not shown directly on the
FlexPendant display).

If none of the arguments \w or \ 1 are specified then the instruction will generate an error
message directly on the flexpendant and also store it in the event log.

Continues on next page

3HAC 16581-1 Revision: J 95

1 Instructions

1.43. ErrLog - Write an error message

RobotWare - OS
Continued

Argumentl

Argument2

Argument3

Argument4

Argument5

Datatype: errstr

First argument in the error message. Any string or predefined data of type errstr can be
used.

Datatype: errstr

Second argument in the error message. Any string or predefined data of type errstr can be
used.

Datatype: errstr

Third argument in the error message. Any string or predefined data of type errstr can be
used

Datatype: errstr

Fourth argument in the error message. Any string or predefined data of type errstr can be
used.

Datatype: errstr

Fifth argument in the error message. Any string or predefined data of type errstr can be
used.

Program execution

An error message (max 5 lines) is displayed on the FlexPendant and written in the event log.

In the case of argument \w or argument \ I awarning or an information message is written
in the event log.

ErrLog generates program errors between 4800-4814 if using the xml file that are installed
by the system, and between 5000-9999 if installing an own xml file. The error generated
dependsonthe ErrorID indicated.

The message is stored in the process domain in the event log.

How to install an own xml fileis described in the Additional options manual, see Related
information below.

Limitations
Total string length (Argument1-Argument5) is limited to 195 characters.
Continues on next page
96 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.43. ErrLog - Write an error message
RobotWare - OS

Continued
Syntax
ErrLog
[ErrorId ':='] < expression (IN) of num> ', '
C'\'w 1 | [~ \rzT71","
[Argumentl ':='] < expression (IN) of errstrs> ','
[Argument2 ':='] < expression (IN) of errstrs> ','
[Argument3 ':='] < expression (IN) of errstr> ','
[Argument4 ':='] < expression (IN) of errstr> ','
[Argument5 ':='] < expression (IN) of errstrs> ';'
Related information
For information about See
Predefined data of type errstr errstr - Error string on page 1114
Display message on the FlexPendant TPWrite - Writes on the FlexPendant on page
568
UIMsgBox - User Message Dialog Box type basic
on page 644
Event log Operating manual - IRC5 with FlexPendant
Event log messages, explanation of xml- Application manual - Additional options, section
file Event log messages
How to install XML files when using Application manual - Additional options

additional options

3HAC 16581-1 Revision: J 97

1 Instructions

1.44. ErrRaise - Writes a warning and calls an error handler

RobotWare - OS

1.44. ErrRaise - Writes a warning and calls an error handler

Usage

ErrRaise isusedto create an error in the program and then call the error handler of the
routine. A warning iswrittenintheevent log. ErrRaise can aso be used in the error handler
to propagate the current error to the error handler of the calling routine.

Error name, error number, and five error arguments must be stated. The message is stored in
the process domain in the robot | og.

Basic examples

Basic examples of the instruction ErrRaise isillustrated below.

Example 1
In case you do not want to make your own .xml file, you can use Error1d 4800 likeinthe
example below:
MODULE MyModule
VAR errnum ERR BATT:=-1;
PROC main ()
VAR num errorid := 4800;
VAR errstr my title := "Backup battery status";
VAR errstr strl := "Bacup battery is fully charged";
BookErrNo ERR_BATT;
ErrRaise "ERR_BATT", errorid, my title, ERRSTR TASK, strl,
ERRSTR CONTEXT, ERRSTR EMPTY ;
ERROR
IF ERRNO = ERR BATT THEN
TRYNEXT;
ENDIF
ENDPROC
ENDMODULE
On the FlexPendant the message will look like this (warning and/or an error):
Event Message: 4800
Backup battery status
Task: main
Backup battery isfully charged
Context: MyM odule/main/ErrRaise
An error number must be booked with the instruction BookErrNo. Corresponding string is
stated as the first argument, ErrorName, in the ErrRaise.
ErrRaise createsan error and then callsthe error handler. If the error istaken care of, a
warning is generated in the event log, in the process domain. Otherwise afatal error is
generated and the program stops.
ErrRaise can also be used in an error handler in asubroutine. In this case the execution
continuesin the error handler of the calling routine.
Continues on next page
98 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

Example 2

1.44. ErrRaise - Writes a warning and calls an error handler
RobotWare - OS
Continued

AnErrorid must bedeclared inan.xml file. The number must be between 5000 - 9999. The
error message iswritten in the .xml file and the arguments to the message are sent in by the
ErrRaise ingtruction. The Errorid inthe .xml fileisthe same stated in the ExrrRaise
instruction.

NOTE: If using an Errorld between 5000-9999 you have to install your own xml file.
Example of message in .xml file:

<Message number="7055" eDefine="SYS ERR ARL INPAR RDONLY">
<Title>Parameter error</Title>
<Description>Task:<arg format="%s" ordinal="1" />
<p />Symbol <arg format="%s" ordinal="2" />is read-only

<p />Context:<arg format="%$s" ordinal="3" /><p /></
Descriptions>

</Message>
Example of instruction:
MODULE MyModule
VAR errnum ERR BATT:=-1;
PROC main ()
VAR num errorid := 7055;
BookErrNo ERR_BATT;

ErrRaise "ERR BATT", errorid, ERRSTR TASK,
ERRSTR_CONTEXT, ERRSTR_UNUSED, ERRSTR UNUSED,
ERRSTR_UNUSED;

ERROR
IF ERRNO = ERR_BATT THEN
TRYNEXT;
ENDIF
ENDPROC
ENDMODULE
On the FlexPendant the message will look like this (warning and/or an error):

Event Message: 7055

Backup battery status

Task: main

Backup battery isfully charged
Context: MyModule/main/Err Raise

An error number must be booked with the instruction BookErrNo. Corresponding string is
stated as the first argument, ErrorName, inthe ErrRaise.

ErrRaise createsan error and then callsthe error handler. If the error istaken care of, a
warning is generated in the event log, in the process domain. Otherwise afatal error is
generated and the program stops.

ErrRaise can also be used in an error handler in a subroutine. In this case the execution
continues in the error handler of the calling routine.

Continues on next page

3HAC 16581-1 Revision: J 99

1 Instructions

1.44. ErrRaise - Writes a warning and calls an error handler

RobotWare - OS

Continued
Arguments
ErrRaise ErrorName ErrorId Argumentl Argument2 Argument3 Argument4
Argument5
ErrorName
Datatype: string
An error number must be booked using the instruction BookErrNo. Corresponding variable
is stated as ErrorName.
ErrorId
Datatype: num
The number of a specific error that isto be monitored. The error number must be in interval
4800-4814 if using the preinstalled xml file, and between 5000 - 9999 if using an own xml
file
Argumentl
Datatype: errstr
First argument in the error message. Any string or predefined data of type errstr can be
used.
Argument2
Datatype: errstr
Second argument in the error message. Any string or predefined data of typeerrstr can be
used.
Argument3
Datatype: errstr
Third argument in the error message. Any string or predefined data of type errstr can be
used
Argument4
Datatype: errstr
Fourth argument in the error message. Any string or predefined data of type errstr can be
used.
Argument5
Datatype: errstr
Fifth argument in the error message. Any string or predefined data of type errstr can be
used.
Continues on next page
100 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.44. ErrRaise - Writes a warning and calls an error handler
RobotWare - OS
Continued

Program execution
ErrRaise generates program warningss between 4800-4814 if using the xml file that are
installed by the system, and between 5000-9999 if installing an own xml file. The error
generated depends on the Error 1D indicated. A warning iswritten in the robot message log
in the domain process.
When the ErrRaise isexecuted the behavior depends on whereit is executed:

» When executing instruction in the routine body, awarning is generated, and the
execution continues in the error handler.

» When executing instruction in an error handler, the old warning is skipped, anew one
is generated, and the control is raised to calling instruction.

Limitations
Total string length (Argument1-Argument5) is limited to 195 characters.

More examples
More examples of how to use the instruction Errraise areillustrated below.

Example 1
VAR errnum ERR BATT:=-1;
VAR errnum ERR NEW ERR:=-1;

PROC main ()
testerrraise;

ENDPROC

PROC testerrraise()
BookErrNo ERR_BATT;
BookErrNo ERR_NEW_ERR;

ErrRaise "ERR_BATT", 7055, ERRSTR_ TASK, ERRSTR CONTEXT,
ERRSTR_UNUSED, ERRSTR_UNUSED, ERRSTR_UNUSED;

ERROR
IF ERRNO = ERR BATT THEN

ErrRaise "ERR_NEW ERR", 7156, ERRSTR_TASK, ERRSTR CONTEXT,
ERRSTR_UNUSED, ERRSTR_UNUSED, ERRSTR_UNUSED;

ENDIF
ENDPROC

Generate new warning 7156 from error handler. Raise control to calling routine and stop
execution.

Continues on next page

3HAC 16581-1 Revision: J 101

1 Instructions

1.44. ErrRaise - Writes a warning and calls an error handler

RobotWare - OS

Continued
Syntax
ErrRaise
[ErrorName ':='] < expression (IN) of string> ','
[ErrorId ':='] < expression (IN) of num> ','
[Argumentl ':='] < expression (IN) of errstr> ','
[Argument2 ':='] < expression (IN) of errstr> ','
[Argument3 ':='] < expression (IN) of errstr> ','
[Argument4 ':='] < expression (IN) of errstr> ','
[Argument5 ':='] < expression (IN) of errstr> ';'
Related information
For information about See

Predefined data of type errstr
Booking error numbers

Error handling

errstr - Error string on page 1114

BookErrNo - Book a RAPID system error number

on page 30

Technical reference manual - RAPID overview

102

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.45. ErrWrite - Write an error message
RobotWare - OS

1.45. ErrWrite - Write an error message

Usage

ErrWrite (Error Write) isused to display an error message on the FlexPendant and write it
in the event log. It can also be used to display warnings and information messages.

Basic examples

Basic examples of the instruction Errwrite areillustrated below.

Example 1
ErrWrite "PLC error", "Fatal error in PLC" \RL2:="Call service";
Stop;
A messageis stored in the robot log. The message is aso shown on the FlexPendant display.
Example 2
ErrWrite \W, "Search error", "No hit for the first search";
RAISE try search again;
A messageis stored in the robot log only. Program execution then continues.
Arguments
ErrWrite [\W 1 | [\I] Header Reason [\RL2] [\RL3] [\RL4]
[AW]
Warning
Datatype: switch
Givesawarning that is stored in the robot error message log only (not shown directly on the
FlexPendant display).
[\I]
Information
Datatype: switch
Gives an information message that is stored in the event log only (not shown directly on the
FlexPendant display).
If none of the arguments \w or \ 1 are specified then the instruction will generate an error
message directly on the flexpendant and aso store it in the event log.
Header
Datatype: string
Error message heading (max. 46 characters).
Reason
Datatype: string
Reason for error.
[\RL2]

Reason Line 2
Datatype: string

Reason for error.

Continues on next page

3HAC 16581-1 Revision: J 103

1 Instructions

1.45. ErrWrite - Write an error message
RobotWare - OS

Continued

[\RL3]
Reason Line 3
Datatype: string
Reason for error.

[\RL4]

Reason Line 4
Datatype: string

Reason for error.

Program execution
An error message (max. 5 lines) is displayed on the FlexPendant and written in the robot
message log.
In the case of argument \w or argument \ I awarning or an information message is written
in the event log.
ErrWrite generatesthe program error no. 80001 for an error, no. 80002 for awarning (\w)
and no. 80003 for an information message (\1) .

Limitations
Total string length (Header+Reason+\RL2+\RL3+\RL4) islimited to 195 characters.
Syntax
ErrWrite
C'\Nw I [L'\ 1T1] ",
[Header ':='] < expression (IN) of strings>','
[Reason ':='] < expression (IN) of strings>
["\'RL2 ':=' < expression (IN) of string>]
["\'"RL3 ':=' < expression (IN) of string>]
["\'RL4 ':=' < expression (IN) of string>] ';'
Related information
For information about See
Predefined data of type errstr errstr - Error string on page 1114
Display message on the FlexPendant TPWrite - Writes on the FlexPendant on page
568
UIMsgBox - User Message Dialog Box type basic
on page 644
Event log Operating manual - IRC5 with FlexPendant
Write error message - Err Log ErrLog - Write an error message on page 94

104 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.46. EXIT - Terminates program execution
RobotWare - OS

1.46. EXIT - Terminates program execution

Usage
EXIT isused to terminate program execution. Program restart will then be blocked, that is
the program can only be restarted from the first instruction of the main routine.

The ex1T instruction should be used when fatal errors occur or when program execution is
to be stopped permanently. The stop instruction is used to temporarily stop program
execution. After execution of the instruction EXIT the program pointer is gone. To continue
program execution, the program pointer must be set.

Basic examples
A basic example of the instruction ex1T isillustrated below.

Example 1
ErrWrite "Fatal error","Illegal state";
EXIT;
Program execution stops and cannot be restarted from that position in the program.
Syntax
EXIT ';'
Related information
For information about See

Stopping program execution temporarily Stop - Stops program execution on page 510

3HAC 16581-1 Revision: J 105

1 Instructions

1.47. ExitCycle - Break current cycle and start next
RobotWare - OS

1.47. ExitCycle - Break current cycle and start next

Usage
ExitCycle isusedto break the current cycle and movethe program pointer (PP) back to the
first instruction in the main routine.
If the program is executed in continuous mode, it will start to execute the next cycle.

If the execution isin cycle mode, the execution will stop at the first instruction in the main
routine.

Basic examples
Basic examples of the instruction Exitcycle areillustrated below.

Example 1
VAR num cyclecount:=0;

VAR intnum error_ intno;

PROC main()
IF cyclecount = 0 THEN
CONNECT error intno WITH error_ trap;
ISignalDI di_error, 1l,error_intno;
ENDIF
cyclecount:=cyclecount+1;

! start to do something intelligent
ENDPROC

TRAP error_ trap
TPWrite "ERROR, I will start on the next item";
ExitCycle;
ENDTRAP
Thiswill start the next cycleif thesignal di_error isset.

Program execution
Execution of ExitCycle inaprogram task controlling mechanical units resultsin the
following in the actual task:

¢ On-going robot movements stops.

e All robot pathsthat are not performed at all path levels (both normal and storepath
level) are cleared.

» All instructions that are started but not finished at all execution levels (both normal
and TrAP level) are interrupted.

» The program pointer is moved to the first instruction in the main routine.
¢ The program execution continues to execute the next cycle.

Continues on next page
106 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.47. ExitCycle - Break current cycle and start next
RobotWare - OS
Continued

Execution of ExitcCycle in some other program task, not controlling mechanical units,
results in the following in the actual task:

» All instructions that are started but not finished on all execution levels (both normal
and TRAP level) are interrupted.

» The program pointer is moved to the first instruction in the main routine.
» The program execution continues to execute the next cycle.

All other modal things in the program and system are not affected by ExitcCycle such as.
» Theactual value of variables or persistents.
* Any motion settings such as StorePath-RestoPath Sequence, world zones, etc.
» Openfiles, directories, etc.
» Defined interrupts, etc.

When using ExitCycle inroutine cals and the entry routine is defined with “Move PP to
Routine...” or“Call Routine...”, ExitCyc1le breaksthe current cycle and movesthe program
pointer back to the first instruction in the entry routine (instead of the main routine as
specified above).

Syntax
ExitCycle';"

Related information

For information about See

Stopping after a fatal error EXIT - Terminates program execution on page
105

Terminating program execution EXIT - Terminates program execution on page
105

Stopping for program actions Stop - Stops program execution on page 510

Finishing execution of a routine RETURN - Finishes execution of a routine on
page 365

3HAC 16581-1 Revision: J 107

1 Instructions

1.48. FOR - Repeats a given number of times

RobotWare - OS

1.48. FOR - Repeats a given number of times

Usage

FOR is used when one or several instructions are to be repeated a number of times.

Basic examples

Example 1

Arguments

Loop counter

Start value

End value

Step value

More examples

A basic example of theinstruction For isillustrated bel ow.
See also More examples on page 108.

FOR i FROM 1 TO 10 DO
routinel;
ENDFOR
Repeats the rout ine1 procedure 10 times.

FOR Loop counter FROM Start value TO End value [STEP Step valuel]
DO ... ENDFOR

Identifier

The name of the data that will contain the value of the current loop counter. The datais
declared automatically.

If the loop counter name is the same as any data that already exists in the actual scope, the
existing datawill be hidden in the For loop and not affected in any way.

Datatype: Num
The desired start value of the loop counter. (usually integer values)

Datatype: Num
The desired end value of the loop counter. (usually integer values)

Datatype: Num

The value by which the loop counter is to be incremented (or decremented) each loop.
(usually integer values)

If thisvalue is not specified, the step value will automatically be set to 1 (or -1 if the start
valueis greater than the end value).

More examples of how to use the instruction For are illustrated below.

Example 1
FOR i FROM 10 TO 2 STEP -2 DO
a{i} := a{i-1};
ENDFOR
Thevaluesin an array are adjusted upwards so that a{10} :=a{9},a{8}:=a{7} etc.
Continues on next page
108 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.48. FOR - Repeats a given number of times
RobotWare - OS
Continued

Program execution
1. Theexpressionsfor the start, end, and step values are eval uated.
2. Theloop counter is assigned the start value.

3. Thevalue of theloop counter is checked to see whether its value lies between the start
and end value, or whether it is equal to the start or end value. If the value of the loop
counter is outside of this range, the For loop stops and program execution continues
with the instruction following ENDFOR.

4. Theinstructionsin the For loop are executed.
5. Theloop counter isincremented (or decremented) in accordance with the step value.

6. The ror loop is repeated, starting from point 3.

Limitations
The loop counter (of data type num) can only be accessed from within the For loop and
consequently hides other data and routines that have the same name. It can only be read (not
updated) by the instructions in the For loop.

Decimal values for start, end, or stop values, in combination with exact termination
conditions for the For loop, cannot be used (undefined whether or not the last loop is
running).

Remarks

If the number of repetitions is to be repeated as long as a given expression is evaluated to a
TRUE vaue, the wHILE instructions should be used instead.

Syntax
(EBNF)
FOR <loop variable> FROM <expression> TO <expressions
[STEP <expression>] DO

<instruction list>

ENDFOR
<loop variable> ::= <identifiers>
Related information
For information about See
Expressions Technical reference manual - RAPID overview
Repeats as long as... WHILE - Repeats as long as ... on page 705
Identifiers Technical reference manual - RAPID overview

3HAC 16581-1 Revision: J 109

1 Instructions

1.49. GetDataVal - Get the value of a data object

RobotWare - OS

1.49. GetDataVal - Get the value of a data object

Usage

GetDataval (Get Data Value) makesit possible to get a value from a data object that is
specified with a string variable.

Basic examples

Example 1

Example 2

Example 3

Basic examples of the instruction Getbataval areillustrated below.

VAR num value;

GetDataVal "reg"+ValToStr (ReadNum (mycom)) ,value;
Thiswill get the value of aregister, with anumber which isreceived from the serial channel
mycom. The value will be stored in the variable value.

VAR datapos block;
VAR string name;

VAR num valuevar;

SetDataSearch "num" \Object:="my.*" \InMod:="mymod";
WHILE GetNextSym(name,block) DO
GetDataVal name\Block:=block,valuevar;
TPWrite name+" "\Num:=valuevar;
ENDWHILE
This session will print out all num variables that begin with my in the module mymod with its
value to the FlexPendant.

VAR num NumArrConst copy{2};

GetDataVal "NumArrConst", NumArrConst copy;
TPWrite "Posl = " \Num:=NumArrConst copy{l};
TPWrite "Pos2 = " \Num:=NumArrConst copy{2};

This session will print out the num variablesin the array NumArrConst .

Arguments

Object

GetDataVal Object [\Blockl] | [\TaskRef] | [\TaskName] Value

Datatype: string
The name of the data object.

Continues on next page

110

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

[\Block]

[\TaskRef]

[\TaskName]

Value

1.49. GetDataVal - Get the value of a data object
RobotWare - OS
Continued

Datatype: datapos

The enclosed block to the data object. This can only be fetched with the GetNext Sym
function.

If this argument is omitted, the value of the visible data object in the current program
execution scope will be fetched.

Task Reference
Datatype: taskid

The program task identity in which to search for the data object specified. When using this
argument, you may search for PERS or TASK PERS declarations in other tasks, any other
declarations will result in an error.

For all program tasksin the system the predefined variables of the datatype taskid will be
available. Thevariableidentity will be"taskname"+"1d", e.g. for the T _RrRoB1 task thevariable
identity will be T rOB11d.

Datatype: string

The program task name in which to search for the data object specified. When using this
argument, you may search for PERS or TASK PERS declarations in other tasks, any other
declarations will result in an error.

Datatype: anytype
Variable for storage of the get value. The data type must be the same as the data type for the

data object to find. The get value can be fetched from a constant, variable, or persistent but
must be stored in avariable.

Error handling

The system variable ERRNO iS Set t0 ERR_SYM_ACCESS if:
» thedataobject is non-existent

» thedataobject isroutine data or routine parameter and is not located in the current
active routine

» searching in other tasks for other declarations then PERS Or TASK PERS

When using the arguments TaskRef Of TaskName YOu may search for PERS Or TASK PERS
declarations in other tasks, any other declarations will result in an error and the system

variable ERRNO iSSet to ERR_SYM ACCESS. Searching for aPERS declared asL.ocAL in other
tasks will also result in an error and the system variable ERRNO iS set to ERR_SYM_ACCESS.

The system variable ERRNO is set to ERR_INVDIM if the data object and the variable used in
argument value have different dimensions.

The error can be handled in the error handler of the routine.

Continues on next page

3HAC 16581-1 Revision: J 111

1 Instructions

1.49. GetDataVal - Get the value of a data object
RobotWare - OS
Continued

Limitations
For a semivalue data type, it is not possible to search for the associated value data type. E.g.
if searching for dionum, no search hit for signalssignaldi will be obtained and if searching
for num, no search hit for signals signalgi Or signalai will be obtained.

Itisnot possible to get the value of avariable declared as.ocar inabuilt in RAPID module.

Syntax
GetDataVal
[Object ’":='] < expression (IN) of string >
["\"Block’ :='<variable (VAR) of dataposs>]
| ["\'TaskRef’ :=' <variable (VAR) of taskids]
| ["\’TaskName’ :=' <expression (IN) of string>] ’,’]

[Value ’':="] <variable (VAR) of anytype>]’';’

Related information

For information about See

Define a symbol set in a search SetDataSearch - Define the symbol set in a search
session sequence on page 433

Get next matching symbol GetNextSym - Get next matching symbol on page 855

Set the value of a data object SetDataVal - Set the value of a data object on page
437

Set the value of many data objects SetAllDataVal - Set a value to all data objects in a
defined set on page 429

The related data type datapos datapos - Enclosing block for a data object on page
1101

112 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.50. GetSysData - Get system data
RobotWare - OS

1.50. GetSysData - Get system data

Usage

GetSysData fetches the value and the optional symbol name for the current system data of
specified data type.

With thisinstruction it is possible to fetch data and the name of the current active Tool, Work
Object, or PayL oad for the robot in actual or connected motion task.

Basic examples

Basic examples of the instruction Get SysData areillustrated below.

Example 1
PERS tooldata curtoolvalue := [TRUE, [[0, O, 0], [1, O, O, 011,
(2, fo, o, 21, [1, 0, O, 0], O, O, 0O]];
VAR string curtoolname;
GetSysData curtoolvalue;
Copy current active tool data valueto the persistent variable curtoolvalue.
Example 2
GetSysData curtoolvalue \ObjectName := curtoolname;
Also copy current active tool name to the variable curtoolname.
Arguments
GetSysData DestObject [\ ObjectName]
DestObject
Datatype: anytype
Persistent variable for storage of current active system data value.
The datatype of this argument also specifies the type of system data (Tool, Work Object, or
PayL oad) to fetch.
Data type Type of system data
tooldata Tool
wobjdata Work Object
loaddata Payload
Array or record component can not be used.
[\ObjectName]

Datatype: string
Option argument (variable or persistent) to also fetch the current active system data name.

Continues on next page

3HAC 16581-1 Revision: J 113

1 Instructions

1.50. GetSysData - Get system data

RobotWare - OS
Continued

Program execution

When running the instruction Get SysData the current data valueis stored in the specified
persistent variable in argument Destobject.

If argument \0bjectName is used, the name of the current datais stored in the specified
variable or persistent in argument objectName.

Current system data for Tool or Work Object is activated by execution of any move
instruction. Payload is activated by execution of the instruction GripLoad.

Syntax

GetSysData
[DestObject
["\’ObjectName’
] ’ ; ’

:='] < persistent (PERS) of anytype>

:=' < variable or persistent (INOUT) of strings>

Related information

For information about

Definition of tools
Definition of work objects
Definition of payload

Set system data

See

tooldata - Tool data on page 1207
wobjdata - Work object data on page 1224
loaddata - Load data on page 1132
SetSysData - Set system data on page 445

114

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.51. GetTrapData - Get interrupt data for current TRAP
RobotWare - OS

1.51. GetTrapData - Get interrupt data for current TRAP

Usage

GetTrapData isused in atrap routine to obtain all information about the interrupt that
caused the trap routine to be executed.

To be used in trap routines generated by instruction IExrror, before use of the instruction
ReadErrData.

Basic examples

Basic examples of the instruction Get TrapData areillustrated below.
See also More examples on page 115.

Example 1
VAR trapdata err data;
GetTrapData err data;
Store interrupt information in the non-value variable err data.
Arguments
GetTrapData TrapEvent
TrapEvent
Datatype: trapdata
Variable for storage of the information about what caused the trap to be executed.
Limitation

Thisinstruction can only be used in a TRAP routine.

More examples

Example 1

More examples of the instruction Get TrapData areillustrated below.

VAR errdomain err domain;
VAR num err number;

VAR errtype err_ type;
VAR trapdata err_data;

TRAP trap_ err
GetTrapData err data;
ReadErrData err data, err domain, err number, err type;
ENDTRAP
When an error is trapped to the trap routine trap_err, the error domain, the error number,
and the error type are saved into appropriate non-value variables of thetype trapdata.

Syntax

GetTrapData
[TrapEvent ’':='] <variable (VAR) of trapdatas’;’

Continues on next page

3HAC 16581-1 Revision: J 115

1 Instructions

1.51. GetTrapData - Get interrupt data for current TRAP

RobotWare - OS
Continued

Related information

For information about
Summary of interrupts

More information on interrupt
management

Interrupt data for current TRAP

Orders an interrupt on errors
Gets information about an error

See

Technical reference manual - RAPID overview,
section RAPID summary - Interrupts

Technical reference manual - RAPID overview,
section Basic characteristics- Interrupts

trapdata - Interrupt data for current TRAP on page
1212

IError - Orders an interrupt on errors on page 126

ReadErrData - Gets information about an error on
page 349

116

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.52. GOTO - Goes to a new instruction
RobotWare - OS

1.52. GOTO - Goes to a new instruction

Usage
coTo isused to transfer program execution to another line (alabel) within the same routine.

Basic examples
Basic examples of the instruction coto areillustrated below.

Example 1
GOTO next;
next:
Program execution continues with the instruction following next.
Example 2
regl := 1;
next:
regl := regl + 1;
IF regl<=5 GOTO next;
The execution will be transferred to next four times (for regi= 2, 3, 4, 5).
Example 3
IF regl>100 THEN
GOTO highvalue
ELSE
GOTO lowvalue
ENDIF
lowvalue:
GOTO ready;
highvalue:
ready:
If reg1l isgreater than 100, the execution will be transferred to the label highvalue,
otherwise the execution will be transferred to the label 1owvalue.
Arguments
GOTO Label
Label
Identifier

Thelabel from where program execution is to continue.

Continues on next page

3HAC 16581-1 Revision: J 117

1 Instructions

1.52. GOTO - Goes to a new instruction

RobotWare - OS

Continued

Limitations
It is only possible to transfer program execution to a label within the same routine.
It isonly possible to transfer program execution to a label within an IF or TEST instruction
if the coTo instruction is also located within the same branch of that instruction.
Itisonly possibleto transfer program execution to alabel within aFor or WHILE instruction
if the coTo instruction is also located within that instruction.

Syntax

(EBNF)
GOTO <identifier>’;’

Related information

For information about

Label

Other instructions that change the
program flow

See

Label - Line name on page 207

Technical reference manual - RAPID overview,
section RAPID summary - Controlling the program
flow

118

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.53. GripLoad - Defines the payload for the robot
RobotWare - OS

1.53. GripLoad - Defines the payload for the robot

Usage

GripLoad is used to define the payload which the robot holdsin its gripper.

Description

A\

When incorrect load datais specified, it can often lead to the following consequences:
If the value in the specified load data is greater than that of the value of the true load;
e Theraobot will not be used to its maximum capacity
» Impaired path accuracy including arisk of overshooting
If the value in the specified |oad data is less than the value of the true load;
» Impaired path accuracy including arisk of overshooting
» Risk of overloading the mechanical structure
WARNING!

It isimportant to always define the actual tool load and when used the payload of the robot
too. Incorrect definitions of load data can result in overloading the robot mechanical
structure.

Basic examples

Basic examples of the instruction GripLoad areillustrated below.

Example 1
GripLoad piecel;
The robot gripper holds aload called piece1.
Example 2
GripLoad loadoO;
The robot gripper releases all loads.
Arguments
GripLoad Load
Load

Datatype: loaddata
Theload data that describes the current payload.

Program execution

The specified load affects the performance of the robot.
The default load, 0 kg, is automatically set
e atacold start-up.
» when anew program is loaded.
* when starting program execution from the beginning.

The payload isupdated for the mechanical unit that are controlled from current program task.
If GripLoad isused from anon-motion task, the payload is updated for the mechanical unit
controlled by the connected motion task.

Continues on next page

3HAC 16581-1 Revision: J 119

1 Instructions

1.53. GripLoad - Defines the payload for the robot

RobotWare - OS
Continued

Syntax

Related information

GripLoad

[Load ':="] < persistent

For information about

Load identification of tool or payload

Definition of load data
Definition of tool load
Definition of work object load

(PERS) of loaddata > ';’

See

Operating manual - IRC5 with FlexPendant,
section Programming and testing - Service
routines - Loadidentify, load identification
service routine

loaddata - Load data on page 1132
tooldata - Tool data on page 1207
wobjdata - Work object data on page 1224

120

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.54. HollowWristReset - Reset hollow wrist for IRB5402 and IRB5403
RobotWare - OS

1.54. HollowWristReset - Reset hollow wrist for IRB5402 and IRB5403

Usage
HollowWristReset (Reset hollow wrist) resets the position of the wrist joints on hollow
wrist manipulators, such as IRB5402 and IRB5403.
The instruction makes it possible to avoid rewinding the wrist joints 4 and 5 after they have
been wound up one or more revolutions. After executing aHollowWristReset instruction,
the wrist joints may continue to wind up in the same direction.

Description

HollowWristReset makesit easier to make application programs. You do not have to
ensure that the wrist position iswithin +2 revolutions at the time of programming, and it may
save cycletime because the robot does not have to spend time rewinding the wrist. However,
thereisalimitation of +144 revolutionsfor winding up joints4 and 5 before thewrist position
isreset by HollowWristReset. Therobot programmer must be aware of thislimitation and
takeit into consideration when planning therobot programs. To ensure that the 144 revolution
limit is not exceeded after running a“wrist-winding” program several times, you should
always et the robot come to acomplete stop and reset the absolute position in every program
(or cycle/routine/module etc. as necessary). Please note that all axes must remain stopped
during the execution of the Hol1lowWristReset instruction. Aslong astheselimitations are
taken into consideration, joints 4 and 5 can wind indefinitely and independently of joint 6
during program execution.

Please use HollowWristReset instead of Indreset to reset the hollow wrist asthis
instruction preserves the joint limits for joint 6 in order to prevent too much twisting of the
paint tubes/cables.

Basic examples

Basic examples of the instruction HollowWristReset areillustrated below.

Example 1
MoveL pl0,v800,fine,paintgunl\WObj:=workobjectl;
HollowWristReset;
All active axes are stopped by a stop point and the wrist is reset.
Limitations

All active axes must be stopped while the Hol1lowWristReset instruction is executed.

The wrist joints must be reset before any of them reach the +144 revolution limit (i.e.
51840 degrees/ 904 rad).

Whenever a program stop, emergency stop, power failure stop, etc. occurs, the controller
retains the path context in order to be able to return to the path and let the robot continue
program execution from the point on the path at which it was stopped. In manua mode, if the
manipulator has been moved out of the path between a stop and arestart, the operator is
informed by the following message on the FlexPendant: “ Not on path! Robot has been
moved after program stop. Should therobot return to the path on Start? Yes/No/
Cance”. This provides an opportunity of returning to the path before restart. In automatic
mode, the robot automatically returns to the path.

Continues on next page

3HAC 16581-1 Revision: J 121

1 Instructions

1.54. HollowWristReset - Reset hollow wrist for IRB5402 and IRB5403
RobotWare - OS
Continued

HollowWristReset removesthe path context. This meansthat itisnot possibleto returnto
thepathin caseof aprogramrestart if theHo11owlristReset instruction has been executed
inthe meantime. If thisinstruction isexecuted manually (“ Debug + Call Service Rout.” inthe
Program Editor) it should only be executed at atime when returning to the path is not
required. That is, after aprogram is completely finished, or an instruction is completely
finished in step-by-step execution and the manipulator is not moved out of the path by
jogging, etc.

Syntax

HollowWristReset ;'

Related information

For information about See

Related system parameters Technical reference manual - System parameters, section
Motion - Arm - Independent Joint

Return to path Technical reference manual - RAPID overview, section
Motion and I/O principles - Positioning during program
execution

122 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.55. IDelete - Cancels an interrupt
IDelete

1.55. IDelete - Cancels an interrupt

Usage

Ipelete (Interrupt Delete) isused to cancel (delete) an interrupt subscription.

If the interrupt is to be only temporarily disabled, the instruction 1Sleep Or IDisable
should be used.

Basic examples

Basic examples of the instruction Ipelete areillustrated below.

Example 1
IDelete feeder_ low;
The interrupt feeder low iscancelled.
Arguments
IDelete Interrupt
Interrupt

Datatype: intnum
The interrupt identity.

Program execution

The definition of the interrupt is completely erased. To defineit again it must first be re-
connected to the trap routine.

It is recommended to preceed IDelete With astop point. Otherwise the interrupt will be
deactivated before the end point of the movement path is reached.

Interrupts do not have to be erased; this is done automatically when
* anew program isloaded
» the program isrestarted from the beginning
 the program pointer is moved to the start of aroutine

Syntax
IDelete [Interrupt “:='] < variable (VAR) of intnum > 7;’
Related information
For information about See
Summary of interrupts Technical reference manual - RAPID overview,
section RAPID summary - Interrupts
More information about interrupt Technical reference manual - RAPID overview,
management section Basic characteristics - Interrupt
Temporarily disabling an interrupt ISleep - Deactivates an interrupt on page 198
Temporarily disabling all interrupts IDisable - Disables interrupts on page 124

3HAC 16581-1 Revision: J 123

1 Instructions

1.56. IDisable - Disables interrupts

RobotWare - OS

1.56. IDisable - Disables interrupts

Usage

Ipisable (Interrupt Disable) isused to disable al interrupts temporarily. It may, for
example, be used in a particularly sensitive part of the program where no interrupts may be
permitted to take place in case they disturb normal program execution.

Basic examples

Example 1

Basic examples of the instruction IDisable areillustrated below.

IDisable;
FOR i FROM 1 TO 100 DO
character[i] :=ReadBin (sensor) ;
ENDFOR
IEnable;
No interrupts are permitted as long as the serial channel is reading.

Program execution

Interrupts that occur during thetimeinwhich an 1pisable instructionisin effect are placed
in aqueue. When interrupts are permitted once more, then the interrupt(s) immediately begin
generating, executed in “first in - first out” order in the queue.

IEnable isactive by default. 1Enable isautomatically set
e atacold start-up
» when starting program execution from the beginning of main

» after executing one cycle (passing main) Or executing ExitCycle

Syntax
IDisable ;'
Related information
For information about See
Summary of interrupts Technical reference manual - RAPID overview,
section RAPID summary - Interrupt
More information about interrupt Technical reference manual - RAPID overview,
management section Basic characteristics - Interrupt
Permitting interrupts IEnable - Enables interrupts on page 125

124

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.57. IEnable - Enables interrupts
RobotWare - OS

1.57. IEnable - Enables interrupts

Usage
IEnable (Interrupt Enable) isused to enable interrupts during program execution.

Basic examples
Basic examples of the instruction 1Enable areillustrated below.

Example 1
IDisable;
FOR i FROM 1 TO 100 DO
character[i] : =ReadBin (sensor) ;
ENDFOR
IEnable;
No interrupts are permitted as long as the serial channdl is reading. When it has finished
reading interrupts are once more permitted.

Program execution
Interrupts which occur during the timein which an I1pisable instructionisin effect are
placed in aqueue. When interrupts are permitted once more (1Enable), the interrupt(s) then
immediately begin generating, executed in“ first in - first out” order in the queue. Program
execution then continues in the ordinary program and interrupts which occur after this are
dealt with as soon as they occur.

Interrupts are always permitted when a program is started from the beginning. Interrupts
disabled by the 1s1eep instruction are not affected by the IEnable instruction.

Syntax
IEnable”;"’
Related information
For information about See
Summary of interrupts Technical reference manual - RAPID overview,
section RAPID summary - Interrupts
More information about interrupt Technical reference manual - RAPID overview,
management section Basic characteristics - Interrupt
Permitting no interrupts IDisable - Disables interrupts on page 124

3HAC 16581-1 Revision: J 125

1 Instructions

1.58. IError - Orders an interrupt on errors

RobotWare - OS

1.58. IError - Orders an interrupt on errors

Usage

IError (Interrupt Errors) is used to order and enable an interrupt when an error occurs.
Error, warning, or state change can be logged with 1Exrror.

Basic examples

Basic examples of the instruction IError areillustrated bel ow.
See also More examples on page 127.

Example 1
VAR intnum err int;
CONNECT err_ int WITH err trap;
IError COMMON ERR, TYPE ALL, err int;
Orders an interrupt in RAPID and execution of the TRAP routine err trap each time an
error, warning, or state change is generated in the system.
Arguments
IError ErrorDomain [\ErrorId] ErrorType Interrupt
ErrorDomain
Datatype: errdomain
The error domain that isto be monitored. Refer to predefined data of type errdomain. To
specify any domain use COMMON _ERR.
[\ErrorId]
Datatype: num
Optionally, the number of a specific error that isto be monitored. The error number must be
specified without the first digit (error domain) of the complete error number.
E.g. 10008 Program restarted, must be specified as 0008 or only 8.
ErrorType
Datatype: errtype
The type of event such as error, warning, or state change that isto be monitored. Refer to
predefined data of type errtype. To specify any type use TYPE_ALL.
Interrupt

Datatype: intnum

Theinterrupt identity. This should have been previously connected to atrap routine by means
of the instruction CONNECT.

Program execution

The corresponding trap routine is automatically called when an error occurs in the specified
domain of the specified type and optionally with the specified error number. When this has
been executed, program execution continues from where the interrupt occurred.

Continues on next page

126

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.58. IError - Orders an interrupt on errors
RobotWare - OS
Continued

More examples
More examples of the instruction 1Error areillustrated below.

VAR intnum err_ interrupt;
VAR trapdata err data;
VAR errdomain err domain;
VAR num err number;

VAR errtype err_ type;

CONNECT err interrupt WITH trap err;
IError COMMON ERR, TYPE ERR, err interrupt;

IDelete err interrupt;

TRAP trap_err
GetTrapData err data;
ReadErrData err data, err domain, err number, err type;
! Set domain no 1 ... 11
SetGO go_errl, err domain;
! Set error no 1 ...9999
SetGO go_err2, err_number;
ENDTRAP
When an error occurs (only error, not warning or state change) the error number is retrieved
in the trap routine, and its value is used to set 2 groups of digital output signals.

Limitation
It is not possible to order an interrupt on internal errors.
Inatask of typeNORMAL the event will be thrown away during program stop so not al events
can befetchedinaNORMAL task. To fetch all eventsthe task must be of static or semi-static
type.
The same variable for interrupt identity cannot be used more than once without first deleting
it. Interrupts should therefore be handled as shown in one of the alternatives bel ow.
PROC main ()

VAR intnum err interrupt;

CONNECT err_interrupt WITH err_trap;

IError COMMON_ERR, TYPE ERR, err_interupt;

WHILE TRUE DO

ENDWHILE
ENDPROC

Continues on next page

3HAC 16581-1 Revision: J 127

1 Instructions

1.58. IError - Orders an interrupt on errors
RobotWare - OS
Continued

Interrupts are activated at the beginning of the program. These instructions in the beginning
are then kept outside the main flow of the program.

PROC main ()

VAR intnum err_ interrupt;

CONNECT err interrupt WITH err trap;
IError COMMON_ERR, TYPE ERR, err_interupt;

IDelete err interrupt;

ENDPROC

Theinterrupt is deleted at the end of the program and is then reactivated. It should be noted,
in this case, that the interrupt is inactive for a short period.

Syntax

IError
:="1]
["\'"ErrorId’ :="’
:="]
:="]

[ExrrorDomain ’

[ErrorType’
[Interrupt’

<expression
<expression

<expression

(IN)
(IN) of num>\\ ’,’

of errdomain>

(IN) of errtype> 7,

<variable (VAR) of intnum>’;’

Related information

For information about

Summary of interrupts

More information on interrupt management

Error domains, predefined constants
Error types, predefined constants
Get interrupt data for current TRAP

Gets information about an error

See

Technical reference manual - RAPID overview,
section RAPID summary - Interrupts

Technical reference manual - RAPID overview,
section Basic characteristics- Interrupts

errdomain - Error domain on page 1106
errtype - Error type on page 1115

GetTrapData - Get interrupt data for current
TRAP on page 115

ReadErrData - Gets information about an error
on page 349

128

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.59. IF - If a condition is met, then ...; otherwise ...
RobotWare - OS

1.59. IF - If a condition is met, then ...; otherwise ...

Usage
1F isused when different instructions are to be executed depending on whether a condition
is met or not.

Basic examples
Basic examples of the instruction IF areillustrated below.

See also More examples on page 130.

Example 1
IF regl > 5 THEN
Set dol;
Set do2;
ENDIF
Thedol and do2 signalsareset only if regl isgreater than s.

Example 2

IF regl > 5 THEN
Set dol;
Set do2;

ELSE
Reset dol;
Reset do2;

ENDIF

Thedo1 and do2 signalsare set or reset depending on whether reg1 isgreater than s or not.

Arguments
IF Condition THEN ...
{ELSEIF Condition THEN ...}
[ELSE ...]
ENDIF

Condition
Datatype: bool

The condition that must be satisfied for the instructions between THEN and ELSE/ELSEIF to
be executed.

Continues on next page

3HAC 16581-1 Revision: J 129

1 Instructions

1.59. IF - If a condition is met, then ...; otherwise ...
RobotWare - OS
Continued

More examples
More examples of how to use the instruction 1F areillustrated bel ow.

Example 1
IF counter > 100 THEN
counter := 100;

ELSEIF counter < 0 THEN

counter := 0;
ELSE

counter := counter + 1;
ENDIF

Counter isincremented by 1. However, if the value of counter isoutsidethelimit 0-100,
counter isassigned the corresponding limit value.

Program execution
The conditionsaretested in sequential order, until one of them is satisfied. Program execution
continues with the instructions associated with that condition. If none of the conditions are
satisfied, program execution continueswith theinstructionsfollowing ELsE. If morethan one
condition is met, only the instructions associated with the first of those conditions are
executed.

Syntax
(EBNF)
IF <conditional expression> THEN
<instruction lists>
{ELSEIF <conditional expression> THEN <instruction list> | <EIT>}
[ELSE

<instruction list>]

ENDIF
Related information
For information about See
Conditions (logical expressions) Technical reference manual - RAPID overview,

section Basic characteristics - Expressions

130 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.60. Incr - Increments by 1
RobotWare - OS

1.60. Incr - Increments by 1

Usage
Incr isused to add 1 to anumeric variable or persistent.

Basic examples
Basic examples of the instruction Incr areillustrated below.

See also More examples on page 131.

Example 1
Incr regl;
lisaddedto regi,i.e regl:=regi+1.
Arguments
Incr Name | Dname
Name
Datatype: num
The name of the variable or persistent to be changed.
Dname

Datatype: dnum
The name of the variable or persistent to be changed.

More examples
More examples of the instruction Incr areillustrated below.

Example 1

VAR num no_of_ parts:=0;

WHILE stop_ production=0 DO
produce_part;
Incr no_of parts;
TPWrite "No of produced parts= "\Num:=no of parts;
ENDWHILE
The number of parts produced is updated each cycle on the FlexPendant. Production
continues to run aslong astheinput signal stop_production iSnot set.

Example 2
VAR dnum no of parts:=0;

WHILE stop production=0 DO
produce part;
Incr no_of parts;
TPWrite "No of produced parts= "\Dnum:=no of parts;
ENDWHILE
The number of parts produced is updated each cycle on the FlexPendant. Production
continuesto run aslong asthe input signal stop production isnot set.

Continues on next page

3HAC 16581-1 Revision: J 131

1 Instructions

1.60. Incr - Increments by 1

RobotWare - OS
Continued

Syntax

Incr
[Name ’':='] < var or

| [Dname’ :=' 1 < var

pers (INOUT) of num >
or pers (INOUT) of dnum >’ ;’

Related information

For information about

Decrementing a variable by 1
Adding any value to a variable

Changing data using an arbitrary
expression, e.g. multiplication

See

Decr - Decrements by 1 on page 81
Add - Adds a numeric value on page 19

=" - Assigns a value on page 24

132

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.61. IndAMove - Independent absolute position movement
Independent Axis

1.61. IndAMove - Independent absolute position movement

Usage

IndaMove (Independent Absolute Movement) isused to change an axisto independent mode
and move the axis to a specific position.

An independent axisis an axis moving independently of other axesin the robot system. As
program execution immediately continues, it is possible to execute other instructions
(including positioning instructions) during the time the independent axis is moving.

If the axisisto be moved within arevolution, the instruction 1ndrMove should be used
instead. If the move isto occur ashort distance from the current position, the instruction
IndDMove must be used.

Thisinstruction can only be used in the main task T_roB1 or, if in a MultiMove system, in
Motion tasks.

Basic examples

Basic examples of the instruction IndaMove areillustrated below.
See also More examples on page 135.

Example 1
IndAMove Station A,2\ToAbsPos:=p4,20;
Axis2 of station_a ismoved to the position p4 at the speed 20 degrees/s.
Arguments
IndAMove MecUnit Axis [\ToAbsPos] | [\ToAbsNum] Speed [\Ramp]
MecUnit
Mechanical Unit
Datatype: mecunit
The name of the mechanical unit.
Axis
Datatype: num
The number of the current axis for the mechanical unit (1-6)
[\ToAbsPos]

To Absolute Position
Datatype: robtarget

Axis position specified asa robtarget. Only the component for this specific axis isused.
The value is used as an absolute position value in degrees (mm for linear axes).

The axis position will be affected if the axisis displaced using the instruction Eof fsSet or
EOffsOn.

For robot axes the argument \ ToAbsNum is to be used instead.

Continues on next page

3HAC 16581-1 Revision: J 133

1 Instructions

1.61. IndAMove - Independent absolute position movement

Independent Axis
Continued

[\ToAbsNum]

Speed

[\Ramp]

Program execution

To Absolute Numeric value

Datatype: num

Axis position defined in degrees (mm for linear axis).

Using this argument, the position will NOT be affected by any displacement, e.g. EOf fsSet
Or PDispOn.

Same function as \ ToabsPos but the position is defined as a numeric value to make it easy
to manually change the position.

Datatype: num
Axis speed in degrees/s (mm/sfor linear axis).

Datatype: num

Decrease acceleration and decel eration from maximum performance
(1 - 100%, 100% = maximum performance).

When 1ndamove is executed the specified axis moves with the programmed speed to the
specified axis position. If \Ramp is programmed there will be areduction of acceleration/
deceleration.

To changethe axisback to normal modethe Indreset instructionisused. In connection with
thisthelogical position of the axis can be changed so that a number of revolutions are erased
from the position, for example, to avoid rotating back for the next movement.

The speed can be adtered by executing another 1ndamove instruction (or another TndxMove
instruction). If aspeed in the opposite direction is selected the axis stops and then accel erates
to the new speed and direction.

For stepwise execution of the instruction the axisis set in independent mode only. The axis
begins its movement when the next instruction is executed and continues aslong as program
execution takes place. For moreinformation see RAPID reference manual - RAPID overview,
section Motion and 1/0 principles - Positioning during program execution - Independent
axes.

When the program pointer is moved to the start of the program or to a new routine all axes
are automatically set to normal, without changing the measurement system (equivalent to
executing the instruction Indreset\014d).

NOTE!

An IndaMove instruction after an TndCMove operation can result in the axis spinning back
to the movement performed in the IndcMove instruction. To prevent this, use an Indreset
instruction before the IndaMove, oOr use an IndRMove instruction.

Continues on next page

134

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.61. IndAMove - Independent absolute position movement
Independent Axis
Continued

Limitations
Axes in independent mode cannot be jogged. If an attempt is made to execute the axis
manually, the axis will not move and an error message will be displayed. Execute an
IndReset instruction or move the program pointer to main in order to |eave independent
mode.

If apower fail occurs when an axisisin independent mode the program cannot be restarted.
An error message is displayed and the program must be started from the beginning.

Theinstruction is not advisable for coupled robot wrist axes (see RAPID reference manual -
RAPID overview, section Motion and 1/0 principles - Positioning during program execution
- Independent axes).

More examples
More examples of the instruction 1ndaMove areillustrated below.

Example 1
ActUnit Station A;
weld stationA;
IndAMove Station_A,l\ToAbsNum:=90,20\Ramp:=50;
ActUnit Station Bj;
weld stationB 1;
WaitUntil IndInpos (Station A,1) = TRUE;
WaitTime 0.2;
DeactUnit Station A;
weld stationB 2;
Station A isactivated and the welding is started in station A.

Station A (axisl) isthen moved to the 90 degrees position while the robot iswelding in
station B. The speed of the axisis 20 degrees/s. The speed is changed with acceleration/
decel eration reduced to 50% of max performance.

When station A reaches this position it is deactivated, and reloading can take place in the
station at the same time as the robot continuesto weld in station B.

Error handling

If the axisis not activated the system variable ERRNO isset to ERR_AXIS ACT. Thiserror can
then be handled in the error handler.

Syntax
IndAMove
[MecUnit’:="] < variable (VAR) of mecunits>’ ,’
[Axis’:="] < expression (IN) of num>
["\'ToAbsPos’:=' < expression (IN) of robtarget>]
| ["\’ ToAbsNum’:=' < expression (IN) of num>] ’,’
[Speed ’":='] < expression (IN) of num>
['\’ Ramp’:=' < expression (IN) of num >] ’;’

Continues on next page
3HAC 16581-1 Revision: J 135

1 Instructions

1.61. IndAMove - Independent absolute position movement

Independent Axis
Continued

Related information

For information about

Independent axes in general

Change back to normal mode
Reset the measurement system
Other independent axis movement

Check the speed status for independent axes

Check the position status for independent
axes

Defining independent joints

See

Technical reference manual - RAPID
overview, section Motion and I/O Principles -
Positioning during program execution -
Independent axes

IndReset - Independent reset on page 144
IndReset - Independent reset on page 144
IndRMove - Independent relative position
movement on page 149

IndDMove - Independent delta position
movement on page 141

IndCMove - Independent continuous
movement on page 137

IndSpeed - Independent speed status on
page 873

IndInpos - Independent axis in position status
on page 871

Technical reference manual - System
parameters, section Motion - Arm -
Independent Joint

136

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.62. IndCMove - Independent continuous movement
Independent Axis

1.62. IndCMove - Independent continuous movement

Usage

IndcMove (Independent Continuous Movement) is used to change an axis to independent
mode and start the axis moving continuously at a specific speed.

An independent axisis an axis moving independently of other axesin the robot system. As
program execution continues immediately it is possible to execute other instructions
(including positioning instructions) during the time the independent axis is moving.

Thisinstruction can only be used in the main task T_roB1 or, if in aMultiMove system, in
Motion tasks.

Basic examples

Basic examples of the instruction IndcMove areillustrated below.
See also More examples on page 139.

Example 1
IndCMove Station A,2,-30.5;
Axis2 of station_ A startsto movein anegative direction at aspeed of 30.5 degrees/s.
Arguments
IndCMove MecUnit Axis Speed [\Ramp]
MecUnit
Mechanical Unit
Datatype: mecunit
The name of the mechanical unit.
Axis
Datatype: num
The number of the current axis for the mechanical unit (1-6).
Speed
Datatype: num
AXxis speed in degrees/s (mm/sfor linear axis).
The direction of movement is specified with the sign of the speed argument.
[\Ramp]

Datatype: num

Decrease accel eration and deceleration from maximum performance
(1 - 100%, 100% = maximum performance).

Continues on next page

3HAC 16581-1 Revision: J 137

1 Instructions

1.62. IndCMove - Independent continuous movement

Independent Axis
Continued

Program execution

When 1ndcMove is executed the specified axis starts to move with the programmed speed.
The direction of movement is specified as the sign of the speed argument. If \Ramp is
programmed there will be a reduction of accel eration/decel eration.

To change the axis back to norma mode the Indreset instruction is used. The logical
position of the axis can be changed in connection with this - anumber of full revolutions can
be erased, for example, to avoid rotating back for the next movement.

The speed can be changed by executing a further tndcMove instruction. If aspeed in the
opposite direction is ordered the axis stops and then accelerates to the new speed and
direction. To stop the axis, speed argument O can be used. It will then still be in independent
mode.

During stepwise execution of the instruction the axisis set in independent mode only. The
axis starts its movement when the next instruction is executed and continues aslong as
program execution continues. For more information see RAPID reference manual - RAPID
overview, section Motion and /O principles - Positioning during program execution -
Independent axes.

When the program pointer is moved to the beginning of the program or to anew routine, al
axes are set automatically to norma mode without changing the measurement system
(equivalent to executing the instruction Indreset\01d).

Limitations

The resolution of the axis position worsens the further it is moved from itslogical zero
position (usually the middle of the working area). To achieve high resol ution again the logical
working area can be set to zero with the instruction 1ndreset. For more information see
RAPID reference manual - RAPID overview, section Motion and 1/0 Principles - Positioning
during program execution - |ndependent axes.

Axes in independent mode cannot be jogged. If an attempt is made to execute the axis
manually, the axis will not move, and an error message will be displayed. Execute an
IndReset instruction or move the program pointer to main in order to leave independent
mode.

If apower fail occurs when the axisisinindependent mode the program cannot be restarted.
An error message is displayed, and the program must be started from the beginning.

Theinstruction is not advisable for coupled robot wrist axes (see RAPID Reference Manual -
RAPID overview, section Motionand I/O principles- Positioning during programexecution -
Independent Axes).

Continues on next page

138

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.62. IndCMove - Independent continuous movement
Independent Axis
Continued

More examples
More examples of the instruction 1ndcMove areillustrated below.

IndCMove Station A,2,20;
WaitUntil IndSpeed(Station A,2 \InSpeed) = TRUE;
WaitTime 0.2;
MoveL pl0, v1000, fine, tooll;
IndCMove Station A,2,-10\Ramp:=50;
MoveL p20, v1000, z50, tooll;
IndRMove Station A,2 \ToRelPos:=pl \Short,10;
MovelL p30, v1000, fine, tooll;
WaitUntil IndInpos (Station A,2) = TRUE;
WaitTime 0.2;
IndReset Station A,2 \RefPos:=p40\Short;
MoveL p40, v1000, fine, tooll;
Axis2 of station_ A startsto movein apositive direction at aspeed of 20 degrees/s. When
this axis has reached the selected speed the robot axes start to move.

When therobot reaches position p1 o the external axischangesdirection and rotates at a speed
of 10 degrees/s. The change of speed is performed with accel eration/decel eration reduced to
50% of maximum performance. At the same time, the robot executes towards p20.

Axis2 of station_a isthen stopped asquickly aspossiblein position p1 within the current
revolution.

When axis 2 has reached this position, and the robot has stopped in position p30, axis 2
returnsto normal mode again. The measurement system offset for thisaxisischangesawhole
number of axis revolutions so that the actual position is as close as possible to p4o.

When the robot is then moved to position p4o, axis2 of station_a will be moved by the
instruction MoveL p40 Viathe shortest route to position pao (max £180 degrees).

Error handling

If the axisis not activated the system variable ERRNO iSset tO ERR_AXIS_ACT. Thiserror can
then be handled in the error handler.

Syntax
IndCMove
[MecUnit’:='] < variable (VAR) of mecunit> ’,’
[Axis’:="] < expression (IN) of nums> ’,’
[Speed ':='] < expression (IN) of num>
["\’ Ramp’:=' < expression (IN) of num >] ’;’

Continues on next page
3HAC 16581-1 Revision: J 139

1 Instructions

1.62. IndCMove - Independent continuous movement

Independent Axis
Continued

Related information

For information about

Independent axes in general

Change back to normal mode
Reset the measurement system
Other independent axis movement

Check the speed status for independent
axes

Check the position status for
independent axes

Defining independent joints

See

Technical reference manual - RAPID overview,
section Motion and I/O principles - Positioning
during program execution - Independent axes

IndReset - Independent reset on page 144
IndReset - Independent reset on page 144
IndAMove - Independent absolute position
movement on page 133

IndRMove - Independent relative position
movement on page 149

IndDMove - Independent delta position movement
on page 141

IndSpeed - Independent speed status on page
873

IndInpos - Independent axis in position status on
page 871

Technical reference manual - System parameters,
section Motion - Arm - Independent Joint

140

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.63. IndDMove - Independent delta position movement
Independent Axis

1.63. IndDMove - Independent delta position movement

Usage

IndpMove (Independent Delta Movement) is used to change an axis to independent mode
and move the axis to a specific distance.

An independent axisis an axis moving independently of other axesin the robot system. As
program execution continues immediately it is possible to execute other instructions
(including positioning instructions) during the time the independent axis is moving.

If the axisisto be moved to a specific position, theinstruction IndaMove OF IndRMove mMust
be used instead.

Thisinstruction can only be used in the main task T rRoB1 or, if in a MultiMove system, in
Mation tasks.

Basic examples

Basic examples of the instruction 1ndbMove are illustrated bel ow.

See also More examples on page 142.

Example 1
IndDMove Station A,2,-30,20;
Axis2 of station_ A ismoved 30 degreesin anegative direction at aspeed of 20 degrees/s.
Arguments
IndDMove MecUnit Axis Delta Speed [\Ramp]
MecUnit
Mechanical Unit
Datatype: mecunit
The name of the mechanical unit.
Axis
Datatype: num
The number of the current axis for the mechanical unit (1-6).
Delta
Datatype: num
The distance which the current axisisto be moved, expressed in degrees (mm for linear axes).
The sign specifies the direction of movement.
Speed
Datatype: num
AXxis speed in degrees/s (mm/s for linear axis).
[\Ramp]

Datatype: num

Decrease acceleration and decel eration from maximum performance
(1 - 100%, 100% = maximum performance).

Continues on next page

3HAC 16581-1 Revision: J 141

1 Instructions

1.63. IndDMove - Independent delta position movement

Independent Axis
Continued

Program execution

When 1ndbMove is executed the specified axis moves with the programmed speed to the
specified distance. Thedirection of movement is specified asthe sign of theDe1 ta argument.
If \Ramp is programmed there will be areduction of accel eration/decel eration.

If the axisis moving the new position is calculated from the momentary position of the axis
when the instruction IndDMove is executed. If an IndDMove instruction with distance O is
executed and the axisis already moving position, the axiswill stop and then move back to the
position which the axis had when the instruction was executed.

To change the axis back to normal mode the 1ndreset instruction is used. The logical
position of the axis can be changed in connection with this - a number of full revolutions can
be erased from the position, for example, to avoid rotating back for the next movement.

The speed can be changed by running afurther 1ndbMove instruction (or another 1ndxMove
instruction). If aspeed in the opposite direction is selected the axis stops and then accel erates
to the new speed and direction.

During stepwise execution of the instruction the axisis set in independent mode only. The
axis starts its movement when the next instruction is executed and continues aslong as
program execution continues. For more information see RAPID reference manual - RAPID
overview, section Motion and /O principles - Positioning during program execution -
Independent axes.

When the program pointer is moved to the beginning of the program, or to anew routine, all
axes are automatically set to norma mode without changing the measurement system
(equivaent to running the instruction Indreset \01d).

Limitations

Axes in independent mode cannot be jogged. If an attempt is made to execute the axis
manually the axis will not move, and an error message will be displayed. Execute an
IndReset instruction or move the program pointer to main in order to leave independent
mode.

If aloss of power fail occurs when the axisisin independent mode the program cannot be
restarted. An error message is displayed, and the program must be started from the beginning.

Theinstruction is not advisable for coupled robot wrist axes (see RAPID reference manual -
RAPID overview, section Motion and 1/O principles - Positioning during program execution
- Independent axes.

More examples

Example 1

More examples of the instruction 1ndbMove areillustrated below.

IndAMove ROB_1, 6\ToAbsNum:=90,20;
WaitUntil IndInpos (ROB 1,6) = TRUE;
WaitTime 0.2;

IndDMove Station A,2,-30,20;
WaitUntil IndInpos(ROB_1,6) = TRUE;
WaitTime 0.2;

IndDMove ROB 1,6,400,20;

Continues on next page

142

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.63. IndDMove - Independent delta position movement
Independent Axis
Continued

Axis 6 of the robot is moved to the following positions:
* 90 degrees
* 60 degrees
» 460 degrees (1 revolution + 100 degrees)

Error handling

If theaxisisnot activated, the system variable ERRNO iSSet to ERR_AXIS_ ACT. Thiserror can
then be handled in the error handler.

Syntax
IndDMove
[MecUnit’:='] < variable (VAR) of mecunit> ’,’
[Axis’:='] < expression (IN) of num> ',’
[Delta’:="] < expression (IN) of num>’',’
[Speed ":="] < expression (IN) of num>
["\’ Ramp’:=' < expression (IN) of num >] ’;’
Related information
For information about See
Independent axes in general Technical reference manual - RAPID overview,
section Motion and 1I/O principles - Positioning
during program execution - Independent axes
Change back to normal mode IndReset - Independent reset on page 144
Reset the measurement system IndReset - Independent reset on page 144
Other independent axis movement IndAMove - Independent absolute position

movement on page 133

IndRMove - Independent relative position
movement on page 149

IndCMove - Independent continuous movement

on page 137
Check the speed status for independent IndSpeed - Independent speed status on page
axes 873
Check the position status for IndInpos - Independent axis in position status on
independent axes page 871
Defining independent joints Technical reference manual - System parameters,

section Motion - Arm - Independent Joint

3HAC 16581-1 Revision: J 143

1 Instructions

1.64. IndReset - Independent reset

Independent Axis

1.64. IndReset - Independent reset

Usage

IndReset (Independent Reset) is used to change an independent axis back to normal mode.
At the sametime, the measurement system for rotational axes can be moved anumber of axis
revolutions.

Thisinstruction can only be used in the main task T_roB1 or, if in aMultiMove system, in
Motion tasks.

Basic examples

Basic examples of the instruction Indreset areillustrated below.
See also More examples on page 147.

IndCMove Station A,2,5;

MoveL *,v1000,fine,tooll;

IndCMove Station A,2,0;

WaitUntil IndSpeed(Station A,2\ZeroSpeed) ;

WaitTime 0.2

IndReset Station A,2;
Axis2 of station_aisfirst moved in independent mode and then changed back to normal
mode. The axiswill keep its position.

NOTE!

The current independent axis and the normal axes should not move when the instruction
IndReset iSexecuted. That iswhy previous position is astop point, and an IndCMove
instruction is executed at zero speed. Furthermore, a pause of 0.2 secondsis used to ensure
that the correct status has been achieved.

Arguments

MecUnit

AXis

IndReset MecUnit Axis [\RefPos] | [\RefNum] [\Short] | [\Fwd]
| [\Bwd] | \oldl]

Mechanical Unit

Datatype: mecunit
The name of the mechanical unit.

Datatype: num
The number of the current axis for the mechanical unit (1-6).

Continues on next page

144

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

[\RefPos]

[\RefNum]

[\Short]

[\Fwd]

[\Bwd]

1.64. IndReset - Independent reset
Independent Axis
Continued

Reference Position
Datatype: robtarget

Referenceaxisposition specified asarobtarget. Only the component for thisspecificaxis
is used. The position must be inside the normal working range.

For robot axes, the argument \RefNum is to be used instead.

The argument is only to be defined together with the argument \ short, \Fwd or \Bwd. Itis
not allowed together with the argument \o14d.

Reference Numeric value
Datatype: num

Reference axis position defined in degrees (mm for linear axis). The position must be inside
the normal working range.

The argument is only to be defined together with the argument \ short, \Fwd or \Bwd. Itis
not allowed together with the argument \o14d.

Same function as \Ref Pos but the position is defined as a numeric value to make it easy to
change the position manually.

Datatype: switch

The measurement system will change awhole number of revolutions on the axis side so that
the axis will be as close as possible to the specified \RefPos or \RefNum position. If a
positioning instruction with the same position isexecuted after Indreset theaxiswill travel
the shortest route, less than £180 degrees, in order to reach the position.

Forward
Datatype: switch

The measurement system will change awhole number of revolutions on the axis side so that
the reference position will be on the positive side of the specified \RefPos Or \RefNum
position. If a positioning instruction with the same position is executed after tndreset, the
axiswill turn in a positive direction less than 360 degrees in order to reach the position.

Backward
Datatype: switch

The measurement system will change awhole number of revolutions on the axis side so that
the reference position will be on the negative side of the specified \RefPos Or \Re fNum
position. If a positioning instruction with the same position is executed after Indreset, the
axiswill turn in a negative direction less than 360 degreesin order to reach the position.

Continues on next page

3HAC 16581-1 Revision: J 145

1 Instructions

1.64. IndReset - Independent reset

Independent Axis
Continued

[\old]

Datatype: switch

Keeps the old position.

NOTE!

Resolution is decreased in positions far away from zero.

If no argument \ short, \Fwd, \Bwd Or \01d is specified - \01d is used as default value.

Program execution

When Indreset isexecuted it changes the independent axis back to normal mode. At the
same time the measurement system for the axis can be moved by a whole number of axis
revolutions.

Theinstruction may also be used in normal mode in order to change the measurement system.
NOTE!

The position is used only to adjust the measurement system - the axis will not move to the
position.

Limitations

The instruction may only be executed when all active axes running in normal mode are
standing still. All active axisin every mechanical unit connected to the same motion planner
need to stand still. The independent mode axis which is going to be changed to normal mode
must also be stationary. For axes in normal mode this is achieved by executing a move
instruction with the argument £ine. The independent axisis stopped by an IndcMove with
speed:=0 (followed by await period of 0.2 seconds), IndRMove, IndAMove, Of IndDMove
instruction.

The resolution of positionsis decreased when moving away from logical position 0. An axis
which progressively rotates further and further from the position 0 should thus be set to zero
using the instruction Indreset with an argument other than \o14d.

The measurement system cannot be changed for linear axes.

To ensure a proper start after Indreset of an axiswith arelative measured measurement
system (synchronization switches) an extratime delay of 0.12 seconds must be added after
the Indreset instruction.

Only robot axis 6 can be used as independent axis. The IndrReset instruction can aso be
used for axis 4 on models IRB2400 and IRB 4400. If 1ndreset isused on robot axis 4 then
axis 6 must not be in the independent mode.

If thisinstruction is preceded by a move instruction, that move instruction must be
programmed with a stop point (zonedata £ine), not afly-by point. Otherwise restart after
power failure will not be possible.

IndReset cannot be executed in a RAPID routine connected to any of following special
system events: PowerOn, Stop, QStop, Restart or Step.

IndReset only switches the independent state for an axis. It cannot be used to stop an

Independent movement. To stop an independent motion it hasto reach a stop condition ot the
user hasto for example move PP to main.

Continues on next page

146

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.64. IndReset - Independent reset
Independent Axis
Continued

More examples
More examples of the instruction 1ndreset areillustrated below.

Example 1

IndAMove Station A, 1\ToAbsNum:=750,50;

WaitUntil IndInpos (Station A,1);

WaitTime 0.2;

IndReset Station A,1 \RefNum:=0 \Short;.

IndAMove Station A, 1\ToAbsNum:=750,50;

WaitUntil IndInpos (Station A,1);

WaitTime 0.2;

IndReset Station A,1 \RefNum:=300 \Short;
Axis1instation_aisfirst movedindependently tothe 750 degreesposition (2 revolutions
and 30 degrees). At the sametime as it changes to normal mode the logical position is set to
30 degrees.

AXxis1instation A issubsequently moved tothe 750 degrees position (2 revolutions and
30 degrees). At the same time as it changes to normal mode the logical position is set to
390 degrees (1 revolution and 30 degrees).

Error handling
If the axisis moving the system variable ERRNO iS Set t0 ERR_AXIS MOVING.

If the axisis hot activated the system variable ERRNO iSset tO ERR_AXIS_ACT. Thiserror can
then be handled in the error handler.

Syntax
IndReset
[MecUnit’:='] < variable (VAR) of mecunit> ’,’
[Axis’:='] < expression (IN) of num>
["\’ RefPos’:=' < expression (IN) of robtargets>] |
["\’ RefNum’:=' < expression (IN) of num>]
["\ Short 1 | [*\" Fwd 1 | ['\’ Bwd] | ["\’ old 1’;’

Continues on next page

3HAC 16581-1 Revision: J 147

1 Instructions

1.64. IndReset - Independent reset

Independent Axis
Continued

Related information

For information about

Independent axes in general

Change an axis to independent mode

Check the speed status for independent
axes

Check the position status for
independent axes

Defining independent joints

See

Technical reference manual - RAPID overview,
section Motion and /O principles - Positioning
during program execution - Independent axes
IndAMove - Independent absolute position
movement on page 133

IndCMove - Independent continuous movement
on page 137

IndDMove - Independent delta position movement
on page 141

IndRMove - Independent relative position
movement on page 149

IndSpeed - Independent speed status on page
873

IndInpos - Independent axis in position status on
page 871

Technical reference manual - System parameters,
section Motion - Arm - Independent Joint

148

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.65. IndRMove - Independent relative position movement
Independent Axis

1.65. IndRMove - Independent relative position movement

Usage

IndrMove (Independent Relative Movement) is used to change arotational axisto
independent mode and move the axis to a specific position within one revolution.

An independent axisis an axis moving independently of other axesin the robot system. As
program execution continues immediately it is possible to execute other instructions
(including positioning instructions) during the time the independent axis is moving.

If the axisisto be moved to an absolute position (several revolutions) or if the axisislinear,
the instruction 1ndaMove isused instead. If the movement isto take place a certain distance
from the current position the instruction IndbMove must be used.

Thisinstruction can only be used in the main task T_roB1 or, if in a MultiMove system, in
Motion tasks.

Basic examples

Basic examples of the instruction IndrRMove areillustrated below.
See also More examples on page 152.

Example 1
IndRMove Station A,2\ToRelPos:=p5 \Short,20;
Axis2 of station_a ismoved the shortest route to position p5 within one revolution
(maximum rotation £ 180 degrees) at a speed of 20 degrees/s.
Arguments
IndRMove MecUnit Axis [\ToRelPos] | [\ToRelNum] [\Short] | [\Fwd]
| [\Bwd] Speed [\Ramp]
MecUnit
Mechanical Unit
Datatype: mecunit
The name of the mechanical unit.
Axis
Datatype: num
The number of the current axis for the mechanical unit (1-6).
[\ToRelPos]

To Relative Position
Datatype: robtarget

Axis position specified asa robtarget. Only the component for this specific axis isused.
The value is used as a position value in degrees within one axis revolution. This means that
the axis moves |l ess than one revolution.

The axis position will be affected if the axisis displaced using the instruction Eof fsSet or
EOffsOn.

For robot axes the argument \ TorRe1Num is to be used instead.

Continues on next page

3HAC 16581-1 Revision: J 149

1 Instructions

1.65. IndRMove - Independent relative position movement
Independent Axis
Continued

[\ToRelNum]
To Relative Numeric value

Datatype: num
AXxis position defined in degrees.

Using this argument the position will NOT be affected by any displacement, e.g. EOf fsSet
Or PDispOn.

Same function as \ Tore1Pos but the position is defined as a numeric value to make it easy
to change the position manually.

[\Short]
Datatype: switch

The axis is moved the shortest route to the new position. This means that the maximum
rotation will be 180 degrees in any direction. The direction of movement therefore depends
on the current location of the axis.

[\Fwd]
Forward
Datatype: switch
The axisismoved in a positive direction to the new position. This means that the maximum
rotation will be 360 degrees and always in a positive direction (increased position value).
[\Bwd]
Backward
Datatype: switch

The axisis moved in a negative direction to the new position. This means that the maximum
rotation will be 360 degrees and always in a hegative direction (decreased position value).

If \Short, \Fwd or \Bwd argument is omitted, \short isused as default value.
Speed

Datatype: num

AXis speed in degrees/s.
[\Ramp]

Datatype: num

Decrease acceleration and decel eration from maximum performance
(1 - 100%, 100% = maximum performance).

Continues on next page
150 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.65. IndRMove - Independent relative position movement
Independent Axis
Continued

Program execution

When 1ndrMove is executed the specified axis moves with the programmed speed to the
specified axis position, but only amaximum of onerevolution. If \Ramp isprogrammed there
will be areduction of acceleration/decel eration.

To change the axis back to normal mode the rndreset instruction isused. Thelogica
position of the axis can be changed in connection with this - anumber of full revolutions can
be erased from the position, for example, to avoid rotating back for the next movement.

The speed can be changed by running afurther IndrMove instruction (or another IndxMove
instruction). If aspeed in the opposite direction is sel ected the axis stops and then accelerates
to the new speed and direction.

During stepwise execution of the instruction the axisis set in independent mode only. The
axis starts its movement when the next instruction is executed and continues as long as
program execution continues. For more information see RAPID reference manual - RAPID
overview, section Motion and /O principles - Positioning during program execution -
Independent axes.

When the program pointer is moved to the beginning of the program or to a new routine, all
axes are automatically set to normal mode without changing the measurement system
(equivalent to running the instruction Indreset \01d).

Limitations

Axes in independent mode cannot be jogged. If an attempt is made to execute the axis
manually the axis will not move, and an error message will be displayed. Execute an
IndReset instruction or move the program pointer to main in order to |eave independent
mode.

If apower fail occurs when the axisisinindependent mode the program cannot be restarted.
An error message is displayed, and the program must be started from the beginning.

Theinstruction is not advisable for coupled robot wrist axes (see RAPID reference manual -
RAPID overview, section Motion and I/O principles- Positioning during programexecution -
Independent axes).

Continues on next page

3HAC 16581-1 Revision: J 151

1 Instructions

1.65. IndRMove - Independent relative position movement

Independent Axis
Continued

More examples

Example 1

More examples of the instruction 1ndrMove areillustrated below.

IndRMove Station A, 1\ToRelPos:=p5 \Fwd,20\Ramp:=50;

Axis1 of station_ A startsto movein apositive direction to the position ps within one
revolution (maximum rotation 360 degrees) at aspeed of 20 degrees/s. The speed is changed
with accel eration/decel eration reduced to 50% of maximum performance.

IndAMove Station A, 1\ToAbsNum:=90,20;
WaitUntil IndInpos(Station A,1) = TRUE;
IndRMove Station A,1\ToRelNum:=80 \Fwd,20;
WaitTime 0.2;

WaitUntil IndInpos (Station A,1) = TRUE;
WaitTime 0.2;

IndRMove Station_A,l\ToRelNum::SO \Bwd, 20;
WaitUntil IndInpos(Station A,1) = TRUE;
WaitTime 0.2;

IndRMove Station A, 1\ToRelNum:=150 \Short,20;
WaitUntil IndInpos (Station A,1) = TRUE;
WaitTime 0.2;

IndAMove Station A, 1\ToAbsNum:=10,20;

Axis1 of station A ismoved to the following positions:

90 degrees

440 degrees (1 revolution + 80 degrees)
410 degrees (1 revolution + 50 degrees)
510 degrees (1 revolution + 150 degrees)
10 degrees

Error handling

If the axisisnot activated the system variable ERRNO iSset to ERR_AXIS ACT. Thiserror can

then be handled in the error handler.
Syntax
IndRMove

[MecUnit’:='] < variable (VAR) of mecunit> ',’

[Axis’:="] < expression (IN) of num>

["\'ToRelPos’:=' < expression (IN) of robtargetss>]

| ["\'ToRelNum’:=' < expression (IN) of num>]

["\'Short 1 | [*\" Fwd]l | ["\’ Bwd] ’,’

[Speed ":="] < expression (IN) of num>

["\'Ramp’ :=" < expression (IN) of num >] ’;’

Continues on next page

152 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.65. IndRMove - Independent relative position movement

Independent Axis
Continued

Related information

For information about

Independent axes in general

Change back to normal mode
Reset the measurement system

Other independent axis movement

Check the speed status for independent
axes

Check the position status for independent
axes

Defining independent joints

See

Technical reference manual - RAPID overview,
section Motion and 1/O principles - Positioning
during program execution - Independent axes

IndReset - Independent reset on page 144
IndReset - Independent reset on page 144
IndAMove - Independent absolute position
movement on page 133

IndDMove - Independent delta position
movement on page 141

IndCMove - Independent continuous movement
on page 137

IndSpeed - Independent speed status on page
873

IndInpos - Independent axis in position status on
page 871

Technical reference manual - System
parameters, section Motion - Arm - Independent
Joint

3HAC 16581-1 Revision: J

153

1 Instructions

1.66. InvertDO - Inverts the value of a digital output signal

RobotWare - OS

1.66. InvertDO - Inverts the value of a digital output signal

Usage

InvertDO (Invert Digital Output) invertsthe value of adigital output signal (0->21and1 -
>0).

Basic examples

Basic examples of the instruction InvertDo areillustrated below.

Example 1
InvertDO dols;
The current value of the signal do15 isinverted.
Arguments
InvertDO Signal
Signal

Datatype: signaldo
The name of the signal to be inverted.

Program execution

Error handling

The current value of the signal isinverted (see figure below).

The figure below shows inversion of digital output signal.

1
Signal level

0
\ Execution of the instruction InvertDO

/ Execution of the instruction InvertDO
1

Signal level

0
xx0500002164

The following recoverable error can be generated. The error can be handled in an error
handler. If thereis no contact with the unit the system variable ERrRNO will be set to:

ERR_NORUNUNIT

Syntax
InvertDO
[Signal ’':='] < variable (VAR) of signaldo > ';’
Related information
For information about See
Input/Output instructions Technical reference manual - RAPID overview,

section RAPID summary - Input and output signals

Input/Output functionality in general Technical reference manual - RAPID overview,
section Motion and 1/O principles - I/O principles

Configuration of 1/0 Technical reference manual - System parameters

154

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.67. IOBusStart - Start of I/O bus
RobotWare - OS

1.67. I0OBusStart - Start of 1/O bus

Usage
IOBusStart isused to start acertain I/O bus.

Basic examples
Basic example of the instruction 1oBusstart isillustrated below.

Example 1
IOBusStart "IBS";
The instruction start the bus with the name 1Bs.
Arguments
IOBusStart BusName
BusName

Datatype: string

The name of busto start.

Program execution
Start the bus with the name specified in the parameter BusName.

Error handling
The system variable ERRNO will be set to ERR_NaME INVALID if the bus name does not
exist.That error can be handled in an ERROR handler.

Syntax
IOBusStart
[BusName ’':='] < expression (IN) of string>’;’
Related information
For information about See
How to get I/O bus state IOBusState - Get current state of 1/0 bus on
page 156
Configuration of 1/0 Technical reference manual - System
parameters

3HAC 16581-1 Revision: J 155

1 Instructions

1.68. IOBusState - Get current state of 1/0 bus

RobotWare - OS

1.68. I0OBusState - Get current state of I/O bus

Usage

IOBusState iSsused to read the state of acertain I/O bus. Its physical state and logical state
define the status for an 1/0 bus.

Basic examples

Example 1

Example 2

Basic examples of the instruction 10BusState areillustrated below.

VAR busstate bstate;

IOBusState "IBS", bstate \Phys;
TEST bstate
CASE IOBUS_PHYS STATE RUNNING:
! Possible to access the signals on the IBS bus
DEFAULT:
! Actions for not up and running IBS bus

ENDTEST

The instruction returns the physical bus state of 1Bs inthebstate variable of type

busstate.

VAR busstate bstate;

IOBusState "IBS", bstate \Logic;
TEST bstate
CASE IOBUS_LOG_STATE STARTED:

! The IBS bus is started
DEFAULT:

! Actions for stopped IBS bus
ENDTEST

Theinstruction returnsthelogical bus state of 1Bs inthebstate variable of typebusstate.

Arguments

BusName

State

IOBusState BusName State [\Phys] | [\Logic]

Datatype: string
The name of busto get state about.

Datatype: busstate

The variable in which the bus state is returned. See predefined data of typebusstate below
at Program execution.

Continues on next page

156

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

[\Phys]

[\Logic]

1.68. IOBusState - Get current state of 1/0 bus
RobotWare - OS
Continued

Physical
Datatype: switch
If using this parameter the physical state of the busis read.

Logical
Datatype: switch
If using this parameter the logical state of the busis read.

Program execution

Returning in parameter state the state of the busis specified in parameter BusName.

The /O buslogical states describe the state a user can order the businto. The state of the 1/O
busis defined in the table below when using optional argument \Logic.

Return value Symbolic constant Comment
10 IOBUS_LOG_STATE_STOPPED Bus is stopped due to error 2
1 IOBUS LOG_STATE_STARTED Bus is started V)

The 1/O bus physical state describes the state that the fieldbus driver can order the bus into.
The state of the I/O bus is defined in the table below when using optional argument \ Phys.

Return value Symbolic constant Comment

20 IOBUS_PHYS_STATE_HALTED Bus is halted®

21 IOBUS_PHYS_STATE_RUNNING Bus is up and running

22 IOBUS_PHYS_STATE_ERROR Bus is not working 2

23 IOBUS_PHYS_STATE_STARTUP Bus is in start up mode, is not com-
municating with any units.

24 IOBUS_PHYS_STATE_INIT Bus is only created ®

NOTE!

For RobotWare 5.08 and earlier versionsit is not possible to use theinstruction 10BusState
with optional argument \Phys or \Logic. From RobotWare 5.09 it is recommended to use
the optional argument \Phys or \Logic.

Continues on next page

3HAC 16581-1 Revision: J 157

1 Instructions

1.68. IOBusState - Get current state of 1/0 bus

RobotWare - OS
Continued

The state of the 1/0 busis defined in the table below when not using any of the optional
argument \ Phys Or \Logic.

Return value Symbolic constant Comment

0 BUSSTATE_HALTED Bus is halted ¥

1 BUSSTATE_RUN Bus is up and running ¥

2 BUSSTATE_ERROR Bus is not working ?

3 BUSSTATE_STARTUP Bus is in start up mode, is not com-
municating with any units.

4 BUSSTATE_INIT Bus is only created *

D|f the busis up and running the state returned in argument state in instruction
IOBusState canbeeither I0BUS LOG STATE STARTED, IOBUS PHYS STATE RUNNING,
or BUSSTATE RUN depending on if optional parameters are used or not in To0BusState.

2 |f the busis stopped due to some error the state returned in argument state can be either
IOBUS_LOG_STATE_STOPPED, IOBUS_PHYS STATE_ERROR, Of BUSSTATE ERROR
depending on if optional parameters are used or not in ToBusState.

3 Not possibleto get this statein the RAPI D program with current version of Robotware - OS.

Error handling

The system variable ERrNO will be set to ERR_NaAME INVALID if the bus name does not
exist.That error can be handled in an ERROR handler

Syntax
IOBusState
[BusName ’':=’] < expression (IN) of string> ',’
[State ’':='"] < variable (VAR) of busstate>
["\’ Phys] | ['\’ Logicl’;’
Related information
For information about See
Definition of bus state busstate - State of /0 bus on page 1088
Start of 1/0 bus IOBusStart - Start of I/O bus on page 155

Input/Output functionality in general Technical reference manual - RAPID overview, section
Motion and I/O Principles -1/O principles

Configuration of 1/0 Technical reference manual - System parameters

158

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.69. IODisable - Disable /O unit
RobotWare - OS

1.69. IODisable - Disable I/O unit

Usage

IODisable isused to deactivate an 1/O unit during program execution.

I/O units are automatically activated after start-up if they are defined in the system
parameters. When required for some reason, 1/O units can be deactivated or activated during
program execution.

NOTE!
It is not possible to deactivate a unit with Trustlevel set to Required.

Basic examples

Basic examples of the instruction 1opisable areillustrated below.

See also More examples on page 160.

Example 1
CONST string celll:="celll";
IODisable celll, 5;
Deactivate an I/O unit with name ce111. Wait max. 5 s.
Arguments
IODisable UnitName MaxTime
UnitName
Datatype: string
A name of an I/O unit (the unit name must be present in the system parameters).
MaxTime

Datatype: num

The maximum period of waiting time permitted expressed in seconds. If this time runs out
before the I/O unit hasfinished the deactivation stepsthe error handler will be called, if there
is one, with the error code ERR_T0ODISABLE. If thereisno error handler the program
execution will be stopped. However, the I/O unit deactivationprocess will always continue
regardless of the MaxTime oOr error.

To deactivate an |/O unit takes about 0-5 s.

Program execution

The specified I/O unit starts the deactivation steps. The instruction is ready when the
deactivation steps are finished. If the MaxTime runs out before the 1/0 unit has finished the
deactivation steps, arecoverable error will be generated.

After deactivation of an /O unit, any setting of outputsin this unit will result in an error.

Continues on next page

3HAC 16581-1 Revision: J 159

1 Instructions

1.69. IODisable - Disable I/0O unit
RobotWare - OS
Continued

Error handling

The following recoverable errors can be generated. The errors can be handled in an error
handler. The system variable ERrNO will be set to:

ERR_IODISABLE if the time out time runs out before the unit is deactivated.

ERR_TRUSTLEVEL if the trustlevel on the unit is set to 0, then the unit can’t be
deactivated.

ERR NAME INVALID if the unit name don’t exist or if the unit isn’t allowed to be
deactivated.

More examples
More examples of theinstruction 1opisable areillustrated bel ow.

Example 1
PROC go_home ()

VAR num recover flag :=0;

! Start to disable I/O unit celll

recover flag := 1;

IODisable "celll", O0;

! Move to home position

MoveJd home, v1000,fine,tooll;

! Wait until deactivation of I/O unit celll is ready
recover flag := 2;

IODisable "celll", 5;

ERROR
IF ERRNO = ERR_IODISABLE THEN
IF recover flag = 1 THEN
TRYNEXT;
ELSEIF recover flag = 2 THEN
RETRY;
ENDIF
ELSEIF ERRNO <> ERR_EXCRTYMAX THEN

RAISE;
ELSE
ErrWrite "IODisable error", "Not possible to disable I/0
unit celll";
Stop;
ENDIF
ENDPROC

To save cycletime the I/O unit ce111 isdeactivated during robot movement to the home
position. With the robot at the home position atest is done to establish whether or not the I/O
unit ce111 isfully deactivated. After the max. number of retries (5 with awaiting time of

5 5), the robot execution will stop with an error message.

The same principle can be used with T0Enable (thiswill save more cycle time compared
with ToDisable).

Continues on next page
160 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.69. IODisable - Disable /O unit
RobotWare - OS

Continued
Syntax
IODisable
[UnitName ’':=’] < expression (IN) of string> ',’
[MaxTime ’':='] < expression (IN) of num> ’;’

Related information

For information about

Enabling an 1/O unit
Input/Output instructions

Input/Output functionality in general

Configuration of I/O

See

IOEnable - Enable 1/0 unit on page 162

Technical reference manual - RAPID overview,
section RAPID Summary - Input and output
signals

Technical reference manual - RAPID overview,
section Motion and /O Principles - I/O Principles

Technical reference manual - System parameters

3HAC 16581-1 Revision: J

161

1 Instructions

1.70. IOEnable - Enable I/O unit

RobotWare - OS

1.70. IOEnable - Enable I/O unit

Usage

IOEnable isused to activate an /O unit during program execution.

I/0 units are automatically activated after start-up if they are defined in the system
parameters. When required for some reason 1/0 units can be deactivated or activated during
program execution.

The controller action when activating a unit depends on the set unit Trustlevel. See System
Parameters Unit Trustlevel.

Basic examples

Basic examples of the instruction 10Enable areillustrated below.
See also More examples on page 163.

Example 1
CONST string celll:="celll";
IOEnable celll, 5;
Enable 1/0O unit with name ce111. Wait max. 5 s.
Arguments
IOEnable UnitName MaxTime
UnitName
Datatype: string
A name of an /O unit (the unit name must be present in the system parameters).
MaxTime

Program execution

Datatype: num

The maximum period of waiting time permitted, expressed in seconds. If this time runs out
before the I/O unit has finished the activation steps the error handler will be called, if thereis
one, with the error code ERR_ TOENABLE. |f thereis no error handler the execution will be
stopped. The I/O unit activation process will however always continue regardless of
MaxTime OF €ITOr.

To activate an 1/O unit takes about 2-5 s.

The specified 1/0 unit starts the activation steps. Theinstruction isready when the activation
stepsarefinished. If theMaxTime runsout beforethe 1/O unit hasfinished the activation steps
arecoverable error will be generated.

After asequence of 10Disable - I0Enable, al outputsfor the current 1/0 unit will be set
to the old values (before 1oDisable).

Continues on next page

162

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.70. IOEnable - Enable 1/O unit
RobotWare - OS
Continued

Error handling

The following recoverable errors can be generated. The errors can be handled in an error
handler. The system variable ERrRNO will be set to:

ERR_IOENABLE if the time out time runs out before the unit is activated.

ERR_NAME INVALID if the unit name don’t exist or if the unit isn’t allowed to be
activated.

ERR_BUSSTATE if an IOEnable is done, and the bus is in error state or

enter error state before the unit is activated.

More examples
IOEnable can also be used to check whether some I/O unit is disconnected for some reason.

More examples of how to use the instruction T10Enable areillustrated below.

Example 1
VAR num max retry:=0;
IOEnable "celll", O;
SetDO celll sig3, 1;
ERROR
IF ERRNO = ERR IOENABLE THEN
WaitTime 1;
RETRY;
ELSEIF ERRNO <> Err EXCRTYMAX THEN
RAISE;
ELSE
ErrWrite "IOEnable error", "Not possible to enable I/O
unit cell";
Stop;
ENDIF
ENDIF
Before using signals on the I/O unit ce111, atest isdone by trying to activate the 1/0O unit
with timeout after o sec. If the test fails ajump is made to the error handler. In the error
handler the program execution waitsfor 1 sec. and anew retry ismade. After s retry attempts
the error ERR_IOENABLE iS propagated to the caller of thisroutine.
Syntax
IOEnable
[UnitName ’':='] < expression (IN) of strings>’ ,’
[MaxTime’ :='] < expression (IN) of num > ’;’

Continues on next page

3HAC 16581-1 Revision: J 163

1 Instructions

1.70. IOEnable - Enable I/O unit
RobotWare - OS
Continued

Related information

For information about

Disabling an I/O unit
Input/Output instructions

Input/Output functionality in general

Configuration of 1/0

See

IODisable - Disable I/O unit on page 159

Technical reference manual - RAPID overview,
section RAPID Summary - Input and Output Signals

Technical reference manual - RAPID overview,
section Motion and 1/O Principles - I/O principles

Technical reference manual - System parameters

164

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.71. IPers - Interrupt at value change of a persistent variable
RobotWare - OS

1.71. IPers - Interrupt at value change of a persistent variable

Usage

IPers (Interrupt Persistent) is used to order and enableinterrupts to be generated when the
value of a persistent variable is changed.

Basic examples

Basic examples of the instruction 1pers areillustrated bel ow.

Example 1
VAR intnum perslint;
PERS num counter := 0;
PROC main ()
CONNECT perslint WITH iroutinel;
IPers counter, perslint;
Idelete perslint;
ENDPROC
TRAP iroutinel
TPWrite "Current value of counter = " \Num:=counter;
ENDTRAP
Orders an interrupt which isto occur each time the persistent variable counter is changed.
A call isthen made to the iroutine1 trap routine.
Arguments
IPers Name Interrupt
Name
Datatype: anytype
The persistent variable that is to generate interrupts.
All type of data could be used such as atomic, record, record component, array, or array
element.
Interrupt

Datatype: intnum

Theinterrupt identity. Thisshould have previously been connected to atrap routine by means
of the instruction CONNECT.

Program execution

When the persistent variable changes value a call is made to the corresponding trap routine.
When this routine has been executed program execution continues from where the interrupt
occurred.

If the persistent variable changes value during a program stop no interrupt will occur when
the program starts again.

Continues on next page

3HAC 16581-1 Revision: J 165

1 Instructions

1.71. IPers - Interrupt at value change of a persistent variable

RobotWare - OS
Continued

Limitations

The same variablefor interrupt identity cannot be used more than once without first deleting

it. See Instructions - ISignalDI

If subscribed on datasuch asrecol

rd component or array element specified in parameter Name,

the interrupt will occur every time any part of the datais changed.

When executing the trap routine and reading the val ue of the persistent, there is no guarantee
that the value read is the one that triggered the interrupt.

Syntax

IPers
[Name ':="] < per
[Interrupt’ :=']

sistent (PERS) of anytype > ’,’

< variable (VAR) of intnum > ' ;'

Related information

For information about

Summary of interrupts

Interrupt from an input signal

More information about interrupt
management

Interrupt identity

See

Technical reference manual - RAPID
overview, section RAPID summary -
Interrupts

ISignalDlI - Orders interrupts from a digital
input signal on page 186

Technical reference manual - RAPID
overview, section Basic characteristics -
Interrupts

intnum - Interrupt identity on page 1125

166

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.72. IRMQMessage - Orders RMQ interrupts for a data type
FlexPendant Interface, PC Interface, or Multitasking

1.72. IRMQMessage - Orders RMQ interrupts for a data type

Usage
IRMQMessage (Interrupt RAPID Message Queue Message) is used to order and enable
interrupts for a specific data type when using RMQ functionality.

Basic examples
Basic examples of the instruction TRMQMessage areillustrated bel ow.

See also More Examples.

Example 1
VAR intnum rmgint;

VAR string dummy;

CONNECT rmgint WITH iroutinel;

IRMQMessage dummy, rmgint;
Orders an interrupt which isto occur each time anew rmgmessage containing the data type
string isreceived. A cal isthen madeto the iroutine1l TRAP routine.

Arguments
IRMQMessage InterruptDataType Interrupt
InterruptDataType
Datatype: anytype
A reference to avariable, persistent or constant of a data type that will generate an interrupt
when a rmgmessage With the specified data type is received.
Interrupt
Datatype: intnum

Theinterrupt identity. This should have previously been connected to a TRAP routine by
means of the instruction CONNECT.

Continues on next page

3HAC 16581-1 Revision: J 167

1 Instructions

1.72. IRMQMessage - Orders RMQ interrupts for a data type
FlexPendant Interface, PC Interface, or Multitasking

Continued

Program execution

When the RMQ message with the specified data type is received, acall is made to the
corresponding TRAP routine. When this has been executed, program execution continues
from where the interrupt occurred.

All messages containing data of the same data type regardless of number of dimensionswill
be handled by the same interrupt. If using different dimensions, use RMQGetMsgHeader tO
adapt for this.

Any message containing data of a data type that no interrupt is connected to will genererate
awarning.

TherMQSendwait instruction hasthe highest priority if amessageisreceived and it fitsthe
description for both the expected answer and a message connected to a TRAP routine with
instruction IRMQMessage.

Not all datatypes can be used in argument InterruptDataType (Seelimitations).

Theinterrupt is considered to be asafe interrupt. A safeinterrupt can not be put in sleep with
instruction 1sleep. The safeinterrupt event will be queued at program stop and stepwise
execution, and when starting in continious mode again, the interrupt will be executed. The
only time asafeinterrupt will bethrown iswhen theinterrupt queueisfull. Then an error will
be reported. The interrupt will not survive program reset, e.g. PP to main.

More examples

Example 1

More examples of how to use the instruction TRMOMessage are illustrated below.

MODULE ReceiverMod

VAR intnum intnol;

VAR rmgheader rmgheaderl;

VAR rmgslot rmgslotl;

VAR rmgmessage rmgmessagel;

PROC main ()
VAR string interrupt on str := stEmpty;
CONNECT intnol WITH RecMsgs;
! Set up interrupts for data type string

IRMQMessage interrupt on str, intnol;

! Perform cycle
WHILE TRUE DO

ENDWHILE
ENDPROC

Continues on next page

168

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.72. IRMQMessage - Orders RMQ interrupts for a data type
FlexPendant Interface, PC Interface, or Multitasking

Continued
TRAP RecMsgs
VAR string receivestr;
VAR string client name;
VAR num userdef;
! Get the message from the RMQ
RMQGetMessage rmgmessagel;
! Get information about the message
RMQGetMsgHeader rmgmessagel \Header:=rmgheaderl
\SenderId:=rmgslotl \UserDef:=userdef;
IF rmgheaderl.datatype = "string" AND rmgheaderl.ndim = 0 THEN

! Get the data received in rmgmessagel

RMQGetMsgData rmgmessagel, receivestr;

client name := RMQGetSlotName (rmgslotl) ;
TPWrite "Rec string: " + receivestr;
TPWrite "User Def: " + ValToStr (userdef) ;
TPWrite "From: " + client name;

ELSE

TPWrite "Faulty data received!"
ENDIF

ENDTRAP
ENDMODULE

The example show how to set up interrupts for a specific datatype. When amessageis

received, the TRAP RecMsgs IS executed and the received datain the message is printed to

the FlexPendant. If the data type received or the dimension of the dataiis different from the

expected, thisis printed to the FlexPendant.

Limitations
It isnot allowed to execute TRMOMessage in synchronous mode. That will cause afatal
runtime error.

It is not possible to setup interrupts, send or receive data instances of data types that are of
non-value, semi-value types or datatype motsetdata.

The same variable for interrupt identity can not be used more than once without first deleting
it. Interrupts should therefore be handled as shown in one of the alternatives below.
PROC main ()

VAR intnum rmgint;

VAR mytype dummy;

CONNECT rmglint WITH iroutinel;

IRMQMessage dummy, rmgint;

WHILE TRUE DO

ENDWHILE
ENDPROC

Continues on next page

3HAC 16581-1 Revision: J 169

1 Instructions

1.72. IRMQMessage -

Orders RMQ interrupts for a data type

FlexPendant Interface, PC Interface, or Multitasking

Continued

Syntax

All activation of interrupts is done at the beginning of the program. These beginning
instructions are then kept outside the main flow of the program.

PROC main ()
VAR intnum rmgint;

VAR mytype dummy;

CONNECT rmgint WITH iroutinel;

IRMQMessage dummy, rmgint;

IDelete rmgint;
ENDPROC

Theinterrupt isdeleted at the end of the program, and is then reactivated. It should be noted,
in this case, that the interrupt is inactive for a short period.

IRMQMessage
[InterruptDataType' :=']
[Interrupt' :=']

< reference

< variable

(REF) of anytype >

(VAR) of intnum >‘';'

Related information

For information about

Description of the RAPID Message Queue
functionality

Send data to the queue of a RAPID task or
Robot Application Builder client.

Get the first message from a RAPID Message
Queue.

Send data to the queue of a RAPID task or
Robot Application Builder client, and wait for
an answer from the client.

Extract the header data from a rmgmessage.

Send data to the queue of a RAPID task or
Robot Application Builder client.

Extract the data from a rmgmessage.

Get the slot name from a specified slot
identity.

See

Application manual - Robot communication
and I/O control, section RAPID Message
Queue.

RMQFindSlot - Find a slot identity from the
slot name on page 371

RMQGetMessage - Get an RMQ message on
page 373
RMQSendWait - Send an RMQ data

message and wait for a response on page
390

RMQGetMsgHeader - Get header
information from an RMQ message on page
380

RMQSendMessage - Send an RMQ data
message on page 386

RMQGetMsgData - Get the data part from an
RMQ message on page 377

RMQGetSlotName - Get the name of an
RMQ client on page 964

170

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.73. ISignalAl - Interrupts from analog input signal
RobotWare - OS

1.73. ISignalAl - Interrupts from analog input signal

Usage

ISignalal (Interrupt Sgnal Analog Input) is used to order and enable interrupts from an
analog input signal.

Basic examples

Example 1

Example 2

Example 3

Basic examples of the instruction 1signalar1 areillustrated below.

VAR intnum siglint;

CONNECT siglint WITH iroutinel;

ISignalAI \Single, ail, AIO BETWEEN, 1.5, 0.5, 0, siglint;
Ordersan interrupt which isto occur thefirst timethelogical value of the analog input signal
ailisbetweeno.s and1.5. A call isthen madeto the iroutine1 trap routine.

ISignalAI ail, AIO BETWEEN, 1.5, 0.5, 0.1, siglint;
Orders an interrupt which isto occur each time the logical value of the analog input signal
ail isbetween 0.5 and 1.5, and the absolute signal difference compared to the stored
reference valueishigger than o. 1.

ISignalAI ail, AIO OUTSIDE, 1.5, 0.5, 0.1, siglint;
Orders an interrupt which isto occur each time the logical value of the analog input signal
ailislowerthan 0.5 or higher than 1. s, and the absolute signal difference compared to the
stored reference valueisbigger than o . 1.

Arguments

[\Single]

[\SingleSafe]

ISignalAI [\Single] | [\SingleSafe] Signal Condition HighValue
LowValue DeltaValue [\DPos] | [\DNeg] Interrupt

Datatype: switch

Specifies whether the interrupt isto occur once or cyclically. If theargument single is Set,
the interrupt occurs once at the most. If the single and singleSafe argumentsis omitted,
an interrupt will occur each time its condition is satisfied.

Datatype: switch

Specifies that the interrupt is single and safe. For definition of single, see description of
Single argument. A safeinterrupt can not be put in sleep with instruction 1s1eep. The safe
interrupt event will be queued at program stop and stepwise execution, and when starting in
continious mode again, the interrupt will be executed. The only time a safe interrupt will be
thrown is when the interrupt queue is full. Then an error will be reported. The interrupt will
not survive program reset, e.g. PP to main.

Continues on next page

3HAC 16581-1 Revision: J 171

1 Instructions

1.73. ISignalAl - Interrupts from analog input signal

RobotWare - OS

Continued
Signal
Datatype: signalai
The name of the signal that isto generate interrupts.
Condition
Datatype: aiotrigg
Specifies how Highvalue and Lowvalue define the condition to be satisfied:
Value Symbolic constant Comment
1 AIO ABOVE HIGH Signal will generate interrupts if above specified high value
2 AIO BELOW HIGH Signal will generate interrupts if below specified high value
3 AIO ABOVE_LOW Signal will generate interrupts if above specified low value
4 AIO BELOW_LOW Signal will generate interrupts if below specified low value
5 AIO BETWEEN Signal will generate interrupts if between specified low and
high values
6 AIO OUTSIDE Signal will generate interrupts if below specified low value
or above specified high value
7 AIO ALWAYS Signal will always generate interrupts
Highvalue
Datatype: num
High logical value to define the condition.
LowValue
Datatype: num
Low logical value to define the condition.
DeltaValue
Datatype: num
Defines the minimum logical signal difference before generation of anew interrupt. The
current signal value compared to the stored reference value must be greater than the specified
Deltavalue before generation of a new interrupt.
[\DPos]
Datatype: switch
Specifiesthat only positive logical signal differences will give new interrupts.
[\DNeg]
Datatype: switch
Specifies that only negative logical signal differences will give new interrupts.
If none of \DPos and \DNeg argument is used, both positive and negative differences will
generate new interrupts.
Interrupt
Datatype: intnum
Theinterrupt identity. Thisinterrupt should have previously been connected to atrap routine
by means of the instruction CONNECT.
Continues on next page
172 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.73. ISignalAl - Interrupts from analog input signal
RobotWare - OS
Continued

Program execution
When the signal fulfils the specified conditions (both condition and beltavalue) acall
is made to the corresponding trap routine. When this has been executed, program execution
continues from where the interrupt occurred.

Conditions for interrupt generation
Before theinterrupt subscription is ordered, each time the signal is sampled, the value of the
signal isread, saved, and later used as areference value for the beltavalue condition.

At the interrupt subscription time if specified beltavalue = 0 and after the interrupt
subscription time, the signal is sampled. The signal value is then compared to Highvalue
and LowValue according to Condit ion and with consideration to Deltavalue to decideif
an interrupt should be generated or not. If the new read val ue satisfies the specified
HighValue and LowValue Condition, but its difference compared to the last stored
referencevalueislessor equal tothebeltavalue argument, nointerrupt occurs. If thesignal
differenceis not in the specified direction no interrupts will occur (argument \Dros or
\DNeg).

The stored reference valuefor the el tavalue condition isupdated with anewly read value
for later use at any sampleif the following conditions are satisfied:

e Argument Condition with specified Highvalue and Lowvalue (within limits)

* Argument Deltavalue (sufficient signal changein any direction independently of
specified switch \DpPos Or \DNeg)

Thereference value is only updated at the sample time, not at the interrupt subscription time.

Aninterrupt is also generated at the sample for update of the reference value if the direction
of the signal differenceisin accordance with the specified argument (any direction, \DPoso0,
or \DNeg).

When the \single switch is used only one interrupt at the most will be generated. If the
switch \single (cyclic interrupt) is not used a new test of the specified conditions (both
Condition andDeltavalue)ismadeat every sample of thesignal value. Acomparisonis
made between the current signal value and the last stored reference value to decideif an
interrupt should be generated or not.

Continues on next page
3HAC 16581-1 Revision: J 173

1 Instructions

1.73. ISignalAl - Interrupts from analog input signal

RobotWare - OS
Continued

Condition for interrupt generation at interrupt subscription time

Sample before interrupt subscription

RefValue: =Current Value

Interrupt

A

subscription

/

CurrentValue tested against Candition

False
Highvalue and Lowvalue
True
False Y
- DeltaValue = 0
True

\

i

Interrupt generated

xx0500002165

)

/

Continue

Continues on next page

174

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.73. ISignalAl - Interrupts from analog input signal
RobotWare - OS
Continued
Condition for interrupt generation at each sample after interrupt subscription

¢ New Sample

CurrentValue checked against Candition

HighValue and LowValue

True

Y

True
No DpPos or DNeg specified and
ABS (CurrentValue - RefValue) > DeltaValue

False

A J

DpPos specified and True
(CurrentValue - RefValue) > DeltaValue -

False

A
DNeg specified and
(RefValue - CurrentValue) > DeltaValue =

True

False \J

RefValue: = CurrentValue

v v

ABS (CurrentValue - RefValue) > DeltaValue InterrUpt
generated

False
True

A

Refvalue: = CurrentValue

\)

Continue
xx0500002166

Continues on next page
3HAC 16581-1 Revision: J 175

1 Instructions

1.73. ISignalAl - Interrupts from analog input signal
RobotWare - OS
Continued

Example 1 of interrupt generation

Signal logical value

| Highvalue

— 4 — —[>Signal Value

| Lowvalue

-
Ll

0 1 2 3 4 5 6 7 8 9 10 M1 12 Samples
Time for order of interrupt subscription

m Storage of reference value
xx0500002167
Assuming theinterrupt is ordered between sample 0 and 1, the following instruction will give
the following results:

ISignalAI ail, AIO BETWEEN, 6.1, 2.2, 1.0, siglint;
Sample 1 will generate an interrupt because the signa valueis between Highvalue and
LowValue andthesignal difference compared to Sample O is morethan Deltavalue.
Sample 2 will generate an interrupt because the signal valueis between Highvalue and
Lowvalue and the signal difference compared to Sample 1 ismore than beltavalue.
Samples 3, 4, 5 will not generate any interrupt because the signal difference islessthan
DeltaValue.

Sample 6 will generate an interrupt.
Samples 7 to 10 will not generate any interrupt because the signal is above Highvalue.

Sample 11 will not generate any interrupt because the signal difference compared to Sample
6isequa topeltavalue.

Sample 12 will not generate any interrupt because the signal difference compared to Sample
6islessthanDeltavalue.

Continues on next page
176 3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.73. ISignalAl - Interrupts from analog input signal
RobotWare - OS
Continued

Example 2 of interrupt generation

Signal logical value

" | HighValue

N — — =

4 _Ngignal Value

"~ Lowvalue

[
Ll

0 1 2 3 4 5 6 7 8 9 10 11 12 Samples
Time for order of interrupt subscription

m Storage of reference value
xx0500002168

Assuming theinterrupt is ordered between sample 0 and 1, the following instruction will give
the following results:

ISignalAI ail, AIO BETWEEN, 6.1, 2.2, 1.0 \DPos, siglint;
A new reference valueis stored at sample 1 and 2 because the signal iswithin limits and the
absolute signal difference between the current value and the last stored reference value is
greater than 1.0. No interrupt will be generated because the signal changesarein the negative
direction.

Sample 6 will generate an interrupt because the signal valueis between Highvalue and
LowValue, and the signal difference in the positive direction compared to sample 2 ismore
than beltavalue.

Continues on next page
3HAC 16581-1 Revision: J 177

1 Instructions

1.73. ISignalAl - Interrupts from analog input signal

RobotWare - OS
Continued

Example 3 of interrupt generation

Signal logical value

T | HighValue

74 BN AN

-1l 4 1L 1 __]NSignal Value

| Lowvalue

-
Ll

0 1 2 3 4 5 6 7 8 9 10 11 12 Samples
Time for order of interrupt subscription

m Storage of reference value
xx0500002169
Assuming theinterrupt is ordered between sample 0 and 1, thefollowing instruction will give

the following results:

ISignalAI \Single, ail, AIO_OUTSIDE, 6.1, 2.2, 1.0 \DPos, siglint;
A new reference value is stored at sample 7 because the signal iswithin limits and the
absolute signal difference between the current value and the last stored reference valueis
greater than 1.0

sample 8 will generate an interrupt because the signal value is above Highvalue, and the
signal difference in the positive direction compared to sample 7 is more than beltavalue.

Continues on next page

178

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.73. ISignalAl - Interrupts from analog input signal
RobotWare - OS

Continued
Example 4 of interrupt generation
Signal logical value
B " HighValue
— Signal Value
B 7%77*7#7777%7#777LOWVa1ue

0 1 2 3 4 5 6 7 8 9 10 M 12 Samples
Time for order of interrupt subscription

m Storage of reference value
xx0500002170

Assuming theinterrupt isordered between sample 0 and 1, thefollowing instruction will give
the following resullts:

ISignalAI ail, AIO ALWAYS, 6.1, 2.2, 1.0 \DPos, siglint;
A new reference value is stored at sample 1 and 2 because the signal iswithin limits and the
absolute signal difference between the current value and the last stored reference valueis
greater than 1.0

Sample 6 will generate an interrupt because the signal difference in the positive direction
compared to sample 2 is more than beltavalue.

Sample 7 and 8 will generate an interrupt because the signal difference in the positive
direction compared to previous sample is more than beltavalue.

A new reference value is stored at sample 11 and 12 because the signal is within limits, and
the absolute signal difference between the current value and the last stored reference valueis
greater than 1.0

Continues on next page
3HAC 16581-1 Revision: J 179

1 Instructions

1.73. ISignalAl - Interrupts from analog input signal

RobotWare - OS
Continued

Error handling

If there is a subscription of interrupt on an analog input signal, an interrupt will be given for
every change in the analog value that satisfies the condition specified when ordering the
interrupt subscription. If the analog value is noisy many interrupts can be generated even if
only one or two hitsin the analog val ue are changed.

To avoid generating interrupts for small changes of the analog input value, set the
Deltavalue toalevel greater than 0. Then no interruptswill be generated until a change of
the analog value is greater than the specified beltavalue.

Following recoverable error can be generated. The error can be handled in an error handler.
The system variable ERrNO Will be set to:

ERR_NORUNUNIT
if there is no contact with the unit.
ERR_AO LIM

if the programmed Highvalue Or LowVvalue argument for the specified analog input signa
Signal isoutside limits.

Limitations
TheHighvalue and Lowvalue arguments should be in the range: logical maximum value,
logical minimum value defined for the signal.
Highvalue must be above Lowvalue.
DeltaValue must be O or positive.
The limitations for the interrupt identity are the same asfor 1signalpz.
Syntax

ISignalAl

["\’ Single] | ["\’ SingleSafe] ’,’

[Signal’:=']<variable (VAR) of signalai>’,’

[Condition’:=']<expression (IN) of aiotriggs>’,’
[HighValue’ :=']<expression (IN) of num>’,’

[LowValue’:=’]<expression (IN) of num>’,’

[DeltavValue’ :=’]<expression (IN) of num>
[['\'DPos] | [’\'DNegl ’,’]

[Interrupt’:=']<variable (VAR) of intnum>’;’

Continues on next page

180

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.73. ISignalAl - Interrupts from analog input signal

RobotWare - OS
Continued

Related information

For information about

Summary of interrupts

Definition of constants

Interrupt from analog output signal
Interrupt from digital input signal

Interrupt from digital output signal

More information on interrupt management

Interrupt identity
Related system parameters (filter)

See
Technical reference manual - RAPID overview,
section RAPID summary - Interrupts

aiotrigg - Analog I/O trigger condition on page
1083

ISignalAO - Interrupts from analog output
signal on page 182

ISignalDlI - Orders interrupts from a digital input
signal on page 186

ISignalDO - Interrupts from a digital output
signal on page 189

Technical reference manual - RAPID overview,
section Basic Characteristics - Interrupts

inthum - Interrupt identity on page 1125

Technical reference manual - System
parameters, section IO signals

3HAC 16581-1 Revision: J

181

1 Instructions

1.74. I1SignalAO - Interrupts from analog output signal

RobotWare - OS

1.74. 1SignalAO - Interrupts from analog output signal

Usage

ISignalao (Interrupt Sgnal Analog Output) is used to order and enable interrupts from an
analog output signal.

Basic examples

Example 1

Example 2

Example 3

Basic examples of the instruction 1signalao areillustrated below.

VAR intnum siglint;

CONNECT siglint WITH iroutinel;

ISignalAO \Single, aol, AIO BETWEEN, 1.5, 0.5, 0, siglint;
Ordersan interrupt whichisto occur thefirst timethelogical value of the anal og output signal
aolisbetweeno.5 and 1.5. A call isthen madeto the iroutinel trap routine.

ISignalAO aol, AIO BETWEEN, 1.5, 0.5, 0.1, siglint;
Orders an interrupt which isto occur each time the logical value of the analog output signal
aol isbetween 0.5 and 1.5, and the absolute signal difference compared to the previous
stored reference value is bigger than 0.1.

ISignalAO aol, AIO OUTSIDE, 1.5, 0.5, 0.1, siglint;
Orders an interrupt which isto occur each time the logical value of the analog output signal
ao1lislowerthano.s or higherthan 1.5, and the absolute signal difference compared to the
previous stored reference value is bigger than 0.1.

Arguments

[\Single]

[\SingleSafe]

ISignalAO [\Single] | [\SingleSafe] Signal Condition HighValue
LowValue DeltaValue [\DPos] | [\DNeg] Interrupt

Datatype: switch

Specifies whether the interrupt is to occur once or cyclically. If the argument Single isset
theinterrupt occursonce at themost. If the single and singlesafe argument isomitted an
interrupt will occur each time its condition is satisfied.

Datatype: switch

Specifies that the interrupt is single and safe. For definition of single, see description of
Single argument. A safeinterrupt can not be put in sleep with instruction 1s1eep. The safe
interrupt event will be queued at program stop and stepwise execution, and when starting in
continious mode again, the interrupt will be executed. The only time a safe interrupt will be
thrown is when the interrupt queue is full. Then an error will be reported. The interrupt will
not survive program reset, e.g. PP to main.

Continues on next page

182

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

Signal

Condition

Highvalue

LowValue

DeltaValue

[\DPos]

[\DNeg]

Interrupt

1.74. ISignalAO - Interrupts from analog output signal
RobotWare - OS

Continued
Datatype: signalao
The name of the signal that isto generate interrupts.
Datatype: aiotrigg
Specifieshow Highvalue and Lowvalue define the condition to be satisfied:
Value Symbolic constant Comment
1 AIO ABOVE_ HIGH Signal will generate interrupts if above specified high value
2 AIO BELOW HIGH Signal will generate interrupts if below specified high value
3 AIO ABOVE_LOW Signal will generate interrupts if above specified low value
4 AIO BELOW_ LOW Signal will generate interrupts if below specified low value
5 AIO BETWEEN Signal will generate interrupts if between specified low and
high values
6 AIO OUTSIDE Signal will generate interrupts if below specified low value
or above specified high value
7 AIO ALWAYS Signal will always generate interrupts

Datatype: num
High logical value to define the condition.

Datatype: num
Low logical value to define the condition.

Datatype: num

Defines the minimum logical signal difference before generation of anew interrupt. The
current signal value compared to the previous stored reference value must be greater than the
specified beltavalue before generation of a new interrupt.

Datatype: switch

Specifiesthat only positive logical signal differenceswill give new interrupts.

Datatype: switch
Specifies that only negative logical signal differenceswill give new interrupts.

If neither of the \DPos and \ DNeg arguments are used, both positive and negative differences
will generate new interrupts.

Datatype: intnum

Theinterrupt identity. Thisinterrupt should have previously been connected to atrap routine
by means of the instruction CONNECT.

Continues on next page

3HAC 16581-1 Revision: J 183

1 Instructions

1.74. I1SignalAO - Interrupts from analog output signal

RobotWare - OS
Continued

Program execution

Seeinstruction 1signalAT for information about:
¢ Program execution
e Condition for interrupt generation
¢ More examples

Same principles arevalid for 1Signalao asfor 1SignalaTl.

Error handling

Following recoverable error can be generated. The error can be handled in an error handler.
The system variable ERrRNO will be set to:

ERR_NORUNUNIT
if there is no contact with the unit.
ERR _AO LIM

if the programmed Highvalue Or Lowvalue argument for the specified anal og output signal
Signal isoutside limits.

Limitations
TheHighvalue and Lowvalue arguments should be in the range: logical maximum value,
logical minimum value, defined for the signal.
Highvalue must be above Lowvalue.
Deltavalue must be O or positive.
The limitations for the interrupt identity are the same asfor 1signalpo.
Syntax

ISignalAO

[*\’ Single] | ["\’ SingleSafe] ’,’

[Signal’:=']<variable (VAR) of signalao>’,’

[Condition’:=']<expression (IN) of aiotriggs’,’
[HighValue’ :=']<expression (IN) of nums>’,’

[LowValue’:=’]<expression (IN) of num>’,’

[Deltavalue’ :=']<expression (IN) of num>
[\'"DPos] | ["\’DNegl ',']

[Interrupt’:=']l<variable (VAR) of intnums>’;’

Continues on next page

184

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

1.74. ISignalAO - Interrupts from analog output signal

RobotWare - OS
Continued

Related information

For information about

Summary of interrupts

Definition of constants

Interrupt from analog input signal

Interrupt from digital input signal

Interrupt from digital output signal

More information on interrupt management

Interrupt identity
Related system parameters (filter)

See

Technical reference manual - RAPID
overview, section RAPID Summary -
Interrupts

aiotrigg - Analog I/O trigger condition on page
1083

ISignalAl - Interrupts from analog input signal
on page 171

ISignalDlI - Orders interrupts from a digital
input signal on page 186

ISignalDO - Interrupts from a digital output
signal on page 189

RAPID reference manual - RAPID overview,
section Basic Characteristics - Interrupts

intnum - Interrupt identity on page 1125

Technical reference manual - System
parameters, section 1O signals

3HAC 16581-1 Revision: J

185

1 Instructions

1.75. ISignalDI - Orders interrupts from a digital input signal

RobotWare - OS

1.75. ISignalDlI - Orders interrupts from a digital input signal

Usage

IsignalDI (Interrupt Signal Digital In) isused to order and enableinterruptsfrom adigital
input signal.

Basic examples

Example 1

Example 2

Example 3

Arguments

[\Single]

[\SingleSafe 1]

Signal

Basic examples of the instruction 1signalp1 areillustrated below.

VAR intnum siglint;

CONNECT siglint WITH iroutinel;

ISignalDI dil,1,siglint;
Orders an interrupt which isto occur each time the digital input signal di1issetto1. A call
isthen made to the iroutine1 trap routine.

ISignalDI dil,0,siglint;
Orders an interrupt which isto occur each time the digital input signal di1 issetto o.

ISignalDI \Single, dil,1,siglint;
Ordersan interrupt which isto occur only thefirst timethedigital input signal di1 issetto 1.

ISignalDI [\Single] | [\SingleSafe] Signal TriggValue Interrupt

Datatype: switch
Specifies whether the interrupt isto occur once or cyclically.

If the argument single is set, the interrupt occurs once at the most. If the single and
SingleSafe argumentsisomitted, an interrupt will occur each timeits condition is satisfied.

Datatype: switch

Specifies that the interrupt is single and safe. For definition of single, see description of
Single argument. A safeinterrupt can not be put in sleep with instruction 1s1eep. The safe
interrupt event will be queued at program stop and stepwise execution, and when starting in
continious mode again, the interrupt will be executed. The only time a safe interrupt will be
thrown is when the interrupt queueis full. Then an error will be reported. The interrupt will
not survive program reset, e.g. PP to main.

Datatype: signaldi

The name of the signal that isto generate interrupts.

Continues on next page

186

3HAC 16581-1 Revision: J

© Copyright 2004-2010 ABB. All rights reserved.

© Copyright 2004-2010 ABB. All rights reserved.

1 Instructions

TriggValue

Interrupt

1.75. ISignalDI - Orders interrupts from a digital input signal
RobotWare - OS
Continued

Datatype: dionum
The value to which the signal must change for an interrupt to occur.

Thevalueis specified as 0 or 1 or asa symbolic value (e.g. high/1low). The signal is edge-
triggered upon changeover to O or 1.

Triggvalue 2 or symbolic value edge can be used for generation of interrupts on both
positive flank (0 -> 1) and negative flank (1 -> 0).

Datatype: intnum

Theinterrupt identity. Thisshould have previously been connected to atrap routine by means
of the instruction CONNECT.

Program execution

When the signal assumes the specified value acall is made to the corresponding trap routine.
When this has been executed, program execution continues from where the interrupt
occurred.

If the signal changesto the specified value before theinterrupt is ordered no interrupt occurs.
Interrupts from adigital input signal at signal level 1isillustrated in the figure below.

1

Signal level
0 N

Interrupt ordered

Interrupt ordereij
1

Signal level \

Interrupt occurs

0

xx0500002189

Interrupt occurs

Error handling

Following recoverable error can be generated. The error can be handled in an error handler.
The system variable ERrRNO will be set to:

ERR_NORUNUNIT

if there is no contact with the unit.

Continues on next page

3HAC 16581-1 Revision: J 187

1 Instructions

1.75. ISignalDI - Orders interrupts from a digital input signal
RobotWare - OS

Continued
Limitations
The same variable for interrupt identity cannot be used more than once without first deleting
it. Interrupts should therefore be handled as shown in one of the alternatives bel ow.
PROC main ()
VAR intnum siglint;
CONNECT siglint WITH iroutinel;
ISignalDI dil, 1, siglint;
WHILE TRUE DO
ENDWHILE
ENDPROC
All activation of interrupts is done at the beginning of the program. These beginning
instructions are then kept outside the main flow of the program.
PROC main ()
VAR intnum siglint;
CONNECT siglint WITH iroutinel;
ISignalDI dil, 1, siglint;
IDelete siglint;
ENDPROC
Theinterrupt is deleted at the end of the program and is then reactivated. It should be noted,
in this case, that the interrupt is inactive for a short period.
Syntax
ISignalDI
["\’ Single] | ["\’ SingleSafe] ’,’
[Signal ’':='] < variable (VAR) of signaldi > ',’
[TriggValue’ :='] < expression (IN) of dionum > ’,’
[Interrupt’ :='] < variable (VAR) of intnum > ’;’
Related information
For information about See
Summary of interrupts Technical reference manual - RAPID overview,
section RAPID Summary - Interrupts
Interrupt from an output signal ISignalDO - Interrupts from a digital output signal on
page 189
More information on interrupt Technical reference manual - RAPID overview,
management section Basic Characteristics - Interrupts
Interrupt identity intnum - Interrupt identity on page 1125

188 3HAC 16581-1 Revision: J

